Zheng Yong, Song Hui, Chen Shan, Yu Xiaohui, Zhu Jixin, Xu Jingsan, Zhang Kai A I, Zhang Chao, Liu Tianxi
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
Small. 2020 Nov;16(47):e2004342. doi: 10.1002/smll.202004342. Epub 2020 Nov 3.
The construction of multi-heteroatom-doped metal-free carbon with a reversibly oxygen-involving electrocatalytic performance is highly desirable for rechargeable metal-air batteries. However, the conventional approach for doping heteroatoms into the carbon matrix remains a huge challenge owing to multistep postdoping procedures. Here, a self-templated carbonization strategy to prepare a nitrogen, phosphorus, and fluorine tri-doped carbon nanosphere (NPF-CNS) is developed, during which a heteroatom-enriched covalent triazine polymer serves as a "self-doping" precursor with C, N, P, and F elements simultaneously, avoiding the tedious and inefficient postdoping procedures. Introducing F enhances the electronic structure and surface wettability of the as-obtained catalyst, beneficial to improve the electrocatalytic performance. The optimized NPF-CNS catalyst exhibits a superb electrocatalytic oxygen reduction reaction (ORR) activity, long-term durability in pH-universal conditions as well as outstanding oxygen evolution reaction (OER) performance in an alkaline electrolyte. These superior ORR/OER bifunctional electrocatalytic activities are attributed to the predesigned heteroatom catalytic active sites and high specific surface areas of NPF-CNS. As a demonstration, a zinc-air battery using the NPF-CNS cathode displays a high peak power density of 144 mW cm and great stability during 385 discharging/charging cycles, surpassing that of the commercial Pt/C catalyst.
对于可充电金属空气电池而言,构建具有可逆氧参与电催化性能的多杂原子掺杂无金属碳极具吸引力。然而,由于多步后掺杂程序,将杂原子掺杂到碳基体中的传统方法仍然面临巨大挑战。在此,开发了一种自模板碳化策略来制备氮、磷和氟三掺杂碳纳米球(NPF-CNS),在此过程中,富含杂原子的共价三嗪聚合物作为一种“自掺杂”前驱体,同时含有C、N、P和F元素,避免了繁琐且低效的后掺杂程序。引入F增强了所得催化剂的电子结构和表面润湿性,有利于提高电催化性能。优化后的NPF-CNS催化剂表现出优异的电催化氧还原反应(ORR)活性、在pH通用条件下的长期耐久性以及在碱性电解质中的出色析氧反应(OER)性能。这些优异的ORR/OER双功能电催化活性归因于NPF-CNS预先设计的杂原子催化活性位点和高比表面积。作为例证,使用NPF-CNS阴极的锌空气电池显示出144 mW cm的高峰功率密度,并且在385次充放电循环中具有出色的稳定性,超过了商业Pt/C催化剂。