Kang Hongwei, Ma Quanwei, Wang Rui, Zhang Longhai, Chen Shuisheng, Wang Xinrui, Zhang Chaofeng
School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University Fuyang 236037 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 China
Chem Sci. 2022 Sep 23;13(40):11883-11890. doi: 10.1039/d2sc03980j. eCollection 2022 Oct 19.
Commercialized Vat Blue 4 (VB4) has attracted more attention as a promising anode for large-scale applications in Li-ion batteries (LIBs) due to its high electrochemical activity, low price, and large-scale production. However, its moderate solubility results in severe capacity decay and low utilization of active components. Herein, we present a graphene-supported VB4 composite (VB4/rGO) prepared by a facile sonication and hydrothermal process for long cycling stability and high-rate capability. This design can significantly enhance the Li-storage properties, including high capacity (1045 mA h g at 0.1 A g), long cycling stability (537 mA h g even over 1000 cycles at 1 A g), and rate capability (315 mA h g at 5 A g). Strong π-π interaction derived from the aromatic rings within the π-conjugated system (graphene and VB4) and spatial confinement in-between graphene sheets both can suppress the high solubility of VB4 for superior capacity retention. Moreover, conductive graphene and channels in-between nanosheets can simultaneously facilitate the electron and Li transfer. This work demonstrates a simple and effective method to improve the electrochemical performance of commercialized Vat dyes and provides a low-cost and large-scale strategy to develop their practical application in the energy storage field.
商业化的还原蓝4(VB4)因其高电化学活性、低价格和大规模生产,作为一种有望用于锂离子电池(LIBs)大规模应用的阳极材料而备受关注。然而,其适度的溶解度导致严重的容量衰减和活性成分的低利用率。在此,我们展示了一种通过简便的超声处理和水热法制备的石墨烯负载VB4复合材料(VB4/rGO),以实现长循环稳定性和高倍率性能。这种设计可以显著提高锂存储性能,包括高容量(在0.1 A g时为1045 mA h g)、长循环稳定性(在1 A g下即使超过1000次循环仍为537 mA h g)和倍率性能(在5 A g时为315 mA h g)。源自π共轭体系(石墨烯和VB4)内芳环的强π-π相互作用以及石墨烯片层之间的空间限制都可以抑制VB4的高溶解度,从而实现优异的容量保持率。此外,导电的石墨烯和纳米片层之间的通道可以同时促进电子和锂的转移。这项工作展示了一种简单有效的方法来改善商业化还原染料的电化学性能,并提供了一种低成本、大规模的策略来开发其在储能领域的实际应用。