Suppr超能文献

基于持续时间隐马尔可夫模型的心音信号分割

[Segmentation of heart sound signals based on duration hidden Markov model].

作者信息

Kui Haoran, Pan Jiahua, Zong Rong, Yang Hongbo, Su Wei, Wang Weilian

机构信息

School of Information Science and Engineering, Yunnan University, Kunming 650504, P.R.China.

Yunnan Fuwai Cardiovascular Disease Hospital, Kunming 650102, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Oct 25;37(5):765-774. doi: 10.7507/1001-5515.201911061.

Abstract

Heart sound segmentation is a key step before heart sound classification. It refers to the processing of the acquired heart sound signal that separates the cardiac cycle into systolic and diastolic, etc. To solve the accuracy limitation of heart sound segmentation without relying on electrocardiogram, an algorithm based on the duration hidden Markov model (DHMM) was proposed. Firstly, the heart sound samples were positionally labeled. Then autocorrelation estimation method was used to estimate cardiac cycle duration, and Gaussian mixture distribution was used to model the duration of sample-state. Next, the hidden Markov model (HMM) was optimized in the training set and the DHMM was established. Finally, the Viterbi algorithm was used to track back the state of heart sounds to obtain S, systole, S and diastole. 500 heart sound samples were used to test the performance of our algorithm. The average evaluation accuracy score (F) was 0.933, the average sensitivity was 0.930, and the average accuracy rate was 0.936. Compared with other algorithms, the performance of our algorithm was more superior. It is proved that the algorithm has high robustness and anti-noise performance, which might provide a novel method for the feature extraction and analysis of heart sound signals collected in clinical environments.

摘要

心音分割是心音分类之前的关键步骤。它指的是对采集到的心音信号进行处理,将心动周期分为收缩期和舒张期等。为了解决不依赖心电图的心音分割精度受限问题,提出了一种基于持续时间隐马尔可夫模型(DHMM)的算法。首先,对心音样本进行位置标记。然后采用自相关估计方法估计心动周期持续时间,并用高斯混合分布对样本状态的持续时间进行建模。接下来,在训练集中对隐马尔可夫模型(HMM)进行优化并建立DHMM。最后,使用维特比算法回溯心音状态以获得S波、收缩期、S波和舒张期。使用500个心音样本测试我们算法的性能。平均评估准确率得分(F)为0.933,平均灵敏度为0.930,平均准确率为0.936。与其他算法相比,我们算法的性能更优越。证明该算法具有高鲁棒性和抗噪声性能,可能为临床环境中采集的心音信号的特征提取和分析提供一种新方法。

相似文献

1
[Segmentation of heart sound signals based on duration hidden Markov model].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Oct 25;37(5):765-774. doi: 10.7507/1001-5515.201911061.
2
A Markov-Switching Model Approach to Heart Sound Segmentation and Classification.
IEEE J Biomed Health Inform. 2020 Mar;24(3):705-716. doi: 10.1109/JBHI.2019.2925036. Epub 2019 Jun 26.
3
Performance of an open-source heart sound segmentation algorithm on eight independent databases.
Physiol Meas. 2017 Aug 1;38(8):1730-1745. doi: 10.1088/1361-6579/aa6e9f.
4
Segmentation of heart sound recordings by a duration-dependent hidden Markov model.
Physiol Meas. 2010 Apr;31(4):513-29. doi: 10.1088/0967-3334/31/4/004. Epub 2010 Mar 5.
5
Logistic Regression-HSMM-Based Heart Sound Segmentation.
IEEE Trans Biomed Eng. 2016 Apr;63(4):822-32. doi: 10.1109/TBME.2015.2475278. Epub 2015 Sep 1.
6
Enhancement of the heart sound envelope using the logistic function amplitude moderation method.
Comput Methods Programs Biomed. 2020 Apr;187:105239. doi: 10.1016/j.cmpb.2019.105239. Epub 2019 Nov 26.
7
Deep Convolutional Neural Networks for Heart Sound Segmentation.
IEEE J Biomed Health Inform. 2019 Nov;23(6):2435-2445. doi: 10.1109/JBHI.2019.2894222. Epub 2019 Jan 21.
8
9
Unsupervised detection and classification of heartbeats using the dissimilarity matrix in PCG signals.
Comput Methods Programs Biomed. 2022 Jun;221:106909. doi: 10.1016/j.cmpb.2022.106909. Epub 2022 May 24.
10
ECG segmentation algorithm based on bidirectional hidden semi-Markov model.
Comput Biol Med. 2022 Nov;150:106081. doi: 10.1016/j.compbiomed.2022.106081. Epub 2022 Sep 15.

引用本文的文献

1
Construction and validation of a method for automated time label segmentation of heart sounds.
Front Artif Intell. 2024 Jan 11;6:1309750. doi: 10.3389/frai.2023.1309750. eCollection 2023.
2
[Heart sound classification algorithm based on time-frequency combination feature and adaptive fuzzy neural network].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Dec 25;40(6):1152-1159. doi: 10.7507/1001-5515.202301015.

本文引用的文献

1
Heart Sound Segmentation-An Event Detection Approach Using Deep Recurrent Neural Networks.
IEEE Trans Biomed Eng. 2018 Sep;65(9):1964-1974. doi: 10.1109/TBME.2018.2843258. Epub 2018 Jun 1.
2
Heart sound segmentation based on homomorphic filtering.
Perfusion. 2014 Jul;29(4):351-359. doi: 10.1177/0267659114523463. Epub 2014 Feb 17.
3
A novel method for pediatric heart sound segmentation without using the ECG.
Comput Methods Programs Biomed. 2010 Jul;99(1):43-8. doi: 10.1016/j.cmpb.2009.10.006. Epub 2009 Dec 29.
4
The moment segmentation analysis of heart sound pattern.
Comput Methods Programs Biomed. 2010 May;98(2):140-50. doi: 10.1016/j.cmpb.2009.09.008. Epub 2009 Oct 24.
5
Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database.
Comput Biomed Res. 1994 Feb;27(1):45-60. doi: 10.1006/cbmr.1994.1006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验