Suppr超能文献

基于时程相关隐马尔可夫模型的心音记录分段。

Segmentation of heart sound recordings by a duration-dependent hidden Markov model.

机构信息

Department of Health Science and Technology, Aalborg University, Denmark.

出版信息

Physiol Meas. 2010 Apr;31(4):513-29. doi: 10.1088/0967-3334/31/4/004. Epub 2010 Mar 5.

Abstract

Digital stethoscopes offer new opportunities for computerized analysis of heart sounds. Segmentation of heart sound recordings into periods related to the first and second heart sound (S1 and S2) is fundamental in the analysis process. However, segmentation of heart sounds recorded with handheld stethoscopes in clinical environments is often complicated by background noise. A duration-dependent hidden Markov model (DHMM) is proposed for robust segmentation of heart sounds. The DHMM identifies the most likely sequence of physiological heart sounds, based on duration of the events, the amplitude of the signal envelope and a predefined model structure. The DHMM model was developed and tested with heart sounds recorded bedside with a commercially available handheld stethoscope from a population of patients referred for coronary arterioangiography. The DHMM identified 890 S1 and S2 sounds out of 901 which corresponds to 98.8% (CI: 97.8-99.3%) sensitivity in 73 test patients and 13 misplaced sounds out of 903 identified sounds which corresponds to 98.6% (CI: 97.6-99.1%) positive predictivity. These results indicate that the DHMM is an appropriate model of the heart cycle and suitable for segmentation of clinically recorded heart sounds.

摘要

数字听诊器为心脏声音的计算机分析提供了新的机会。将心音记录分段为与第一心音(S1)和第二心音(S2)相关的周期是分析过程的基础。然而,在临床环境中使用手持式听诊器记录的心脏声音的分段通常会受到背景噪声的干扰。本文提出了一种基于持续时间的隐马尔可夫模型(DHMM),用于稳健地分段心音。DHMM 根据事件的持续时间、信号包络的幅度和预定义的模型结构,确定最有可能的生理心音序列。该 DHMM 模型是使用市售的手持式听诊器在床边记录的来自接受冠状动脉血管造影检查的患者群体的心脏声音进行开发和测试的。DHMM 在 73 名测试患者中识别出 890 个 S1 和 S2 声音,敏感性为 98.8%(置信区间:97.8-99.3%),在识别出的 903 个声音中,有 13 个声音被错误定位,阳性预测值为 98.6%(置信区间:97.6-99.1%)。这些结果表明,DHMM 是心脏周期的合适模型,适用于对临床记录的心脏声音进行分段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验