School of Information Science and Technology, Yunnan University, Kunming 650504, People's Republic of China.
Yunnan Fuwai Cardiovascular Disease Hospital, Kunming 650102, People's Republic of China.
Biomed Phys Eng Express. 2022 Dec 30;9(1). doi: 10.1088/2057-1976/ac9da6.
. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance.. In this paper, a novel method was proposed for HSS exactly using One-Dimensional Convolution and Bidirectional Long-Short Term Memory neural network with Attention mechanism (C-LSTM-A) by incorporating the 0.5-order smooth Shannon entropy envelope and its instantaneous phase waveform (IPW), and third intrinsic mode function (IMF-3) of PCG signal to reduce the difficulty of neural network learning features.. An average F1-score of 96.85 was achieved in the clinical research dataset (Fuwai Yunnan Cardiovascular Hospital heart sound dataset) and an average F1-score of 95.68 was achieved in 2016 PhysioNet/CinC Challenge dataset using the novel method.. The experimental results show that this method has advantages for normal PCG signals and common pathological PCG signals, and the segmented fundamental heart sound(S1, S2), systole, and diastole signal components are beneficial to the study of subsequent heart sound classification.
心音分段(HSS)旨在确定心音图(PCG)心动周期内第一心音(S1)、第二心音(S2)、S1 持续时间、收缩期、S2 和舒张期的确切位置,是发现心脏健康状况所必需的步骤。最近,一些基于神经网络的心音分段方法已经表现出了良好的性能。在本文中,我们提出了一种新的方法,该方法使用一维卷积和具有注意力机制的双向长短时记忆神经网络(C-LSTM-A),通过结合 PCG 信号的 0.5 阶平滑香农熵包络及其瞬时相位波形(IPW)和第三固有模态函数(IMF-3),来降低神经网络学习特征的难度。在临床研究数据集(阜外云南心血管病医院心音数据集)中,该方法的平均 F1 得分为 96.85,在 2016 年 PhysioNet/CinC 挑战赛数据集上,该方法的平均 F1 得分为 95.68。实验结果表明,该方法对正常 PCG 信号和常见病理 PCG 信号具有优势,分段的基本心音(S1、S2)、收缩期和舒张期信号分量有利于后续心音分类的研究。