Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Instituto Gulbenkian de Ciência, Oeiras, Portugal.
Elife. 2020 Nov 3;9:e60462. doi: 10.7554/eLife.60462.
During brain development, progenitor cells need to balanceproliferation and differentiation in order to generate different neurons in the correct numbers and proportions. Currently, the patterns of multipotent progenitor divisions that lead to neurogenic entry and the factors that regulate them are not fully understood. We here use the zebrafish retina to address this gap, exploiting its suitability for quantitative live-imaging. We show that early neurogenic progenitors arise from asymmetric divisions. Notch regulates this asymmetry, as when inhibited, symmetric divisions producing two neurogenic progenitors occur. Surprisingly however, Notch does not act through an apicobasal activity gradient as previously suggested, but through asymmetric inheritance of Sara-positive endosomes. Further, the resulting neurogenic progenitors show cell biological features different from multipotent progenitors, raising the possibility that an intermediate progenitor state exists in the retina. Our study thus reveals new insights into the regulation of proliferative and differentiative events during central nervous system development.
在大脑发育过程中,祖细胞需要平衡增殖和分化,以产生不同数量和比例的神经元。目前,导致神经发生进入的多能祖细胞分裂模式以及调节这些分裂的因素尚未完全了解。我们在这里利用斑马鱼视网膜来解决这一差距,利用其适合定量活体成像的特点。我们表明,早期神经发生祖细胞来源于不对称分裂。Notch 调节这种不对称性,因为当 Notch 被抑制时,会发生产生两个神经发生祖细胞的对称分裂。然而,令人惊讶的是,Notch 并没有像以前那样通过顶端-基底活性梯度起作用,而是通过 Sara 阳性内体的不对称遗传起作用。此外,产生的神经发生祖细胞表现出与多能祖细胞不同的细胞生物学特征,这增加了视网膜中存在中间祖细胞状态的可能性。因此,我们的研究揭示了中枢神经系统发育过程中增殖和分化事件调节的新见解。