Suppr超能文献

糖尿病肾病遗传与表观遗传变异的系统综合分析。

Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease.

机构信息

Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104.

Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):29013-29024. doi: 10.1073/pnas.2005905117. Epub 2020 Nov 3.

Abstract

Poor metabolic control and host genetic predisposition are critical for diabetic kidney disease (DKD) development. The epigenome integrates information from sequence variations and metabolic alterations. Here, we performed a genome-wide methylome association analysis in 500 subjects with DKD from the Chronic Renal Insufficiency Cohort for DKD phenotypes, including glycemic control, albuminuria, kidney function, and kidney function decline. We show distinct methylation patterns associated with each phenotype. We define methylation variations that are associated with underlying nucleotide variations (methylation quantitative trait loci) and show that underlying genetic variations are important drivers of methylation changes. We implemented Bayesian multitrait colocalization analysis (moloc) and summary data-based Mendelian randomization to systematically annotate genomic regions that show association with kidney function, methylation, and gene expression. We prioritized 40 loci, where methylation and gene-expression changes likely mediate the genotype effect on kidney disease development. Functional annotation suggested the role of inflammation, specifically, apoptotic cell clearance and complement activation in kidney disease development. Our study defines methylation changes associated with DKD phenotypes, the key role of underlying genetic variations driving methylation variations, and prioritizes methylome and gene-expression changes that likely mediate the genotype effect on kidney disease pathogenesis.

摘要

代谢控制不良和宿主遗传易感性是糖尿病肾病 (DKD) 发展的关键。表观基因组整合了来自序列变异和代谢改变的信息。在这里,我们对来自 DKD 慢性肾功能不全队列的 500 名 DKD 患者进行了全基因组甲基化组关联分析,这些患者的表型包括血糖控制、蛋白尿、肾功能和肾功能下降。我们展示了与每种表型相关的不同甲基化模式。我们定义了与潜在核苷酸变异相关的甲基化变化(甲基化数量性状基因座),并表明潜在的遗传变异是甲基化变化的重要驱动因素。我们实施了贝叶斯多性状共定位分析 (moloc) 和基于汇总数据的孟德尔随机化,以系统注释与肾功能、甲基化和基因表达相关的基因组区域。我们优先考虑了 40 个位点,其中甲基化和基因表达变化可能介导基因型对肾脏疾病发展的影响。功能注释表明炎症,特别是细胞凋亡清除和补体激活在肾脏疾病发展中的作用。我们的研究定义了与 DKD 表型相关的甲基化变化,确定了潜在遗传变异驱动甲基化变化的关键作用,并优先考虑了可能介导基因型对肾脏疾病发病机制影响的甲基化组和基因表达变化。

相似文献

1
Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease.
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):29013-29024. doi: 10.1073/pnas.2005905117. Epub 2020 Nov 3.
2
DNA Methylation Changes Associated With Type 2 Diabetes and Diabetic Kidney Disease in an East Asian Population.
J Clin Endocrinol Metab. 2021 Sep 27;106(10):e3837-e3851. doi: 10.1210/clinem/dgab488.
3
Cytosine Methylation Studies in Patients with Diabetic Kidney Disease.
Curr Diab Rep. 2019 Aug 30;19(10):91. doi: 10.1007/s11892-019-1214-6.
4
Epigenetics and epigenomics in diabetic kidney disease and metabolic memory.
Nat Rev Nephrol. 2019 Jun;15(6):327-345. doi: 10.1038/s41581-019-0135-6.
5
Functional methylome analysis of human diabetic kidney disease.
JCI Insight. 2019 Jun 6;4(11). doi: 10.1172/jci.insight.128886.
6
Human Lung DNA Methylation Quantitative Trait Loci Colocalize with Chronic Obstructive Pulmonary Disease Genome-Wide Association Loci.
Am J Respir Crit Care Med. 2018 May 15;197(10):1275-1284. doi: 10.1164/rccm.201707-1434OC.
9
A Bayesian framework for multiple trait colocalization from summary association statistics.
Bioinformatics. 2018 Aug 1;34(15):2538-2545. doi: 10.1093/bioinformatics/bty147.
10
Genetic and epigenetic background of diabetic kidney disease.
Front Endocrinol (Lausanne). 2023 May 30;14:1163001. doi: 10.3389/fendo.2023.1163001. eCollection 2023.

引用本文的文献

6
New insights in the treatment of DKD: recent advances and future prospects.
BMC Nephrol. 2025 Feb 11;26(1):72. doi: 10.1186/s12882-025-03953-3.
7
Insights into the molecular underpinning of type 2 diabetes complications.
Hum Mol Genet. 2025 Mar 7;34(6):469-480. doi: 10.1093/hmg/ddae203.
8
METTL10 attenuates adriamycin-induced podocyte injury by targeting cell dedifferentiation.
Sci Rep. 2025 Jan 7;15(1):1218. doi: 10.1038/s41598-024-80526-8.
9
Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine.
J Pers Med. 2024 Dec 19;14(12):1157. doi: 10.3390/jpm14121157.
10
Blood methylation biomarkers are associated with diabetic kidney disease progression in type 1 diabetes.
medRxiv. 2024 Nov 29:2024.11.28.24318055. doi: 10.1101/2024.11.28.24318055.

本文引用的文献

1
Inhibition of IRF5 cellular activity with cell-penetrating peptides that target homodimerization.
Sci Adv. 2020 May 15;6(20):eaay1057. doi: 10.1126/sciadv.aay1057. eCollection 2020 May.
3
Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen.
J Am Soc Nephrol. 2019 Oct;30(10):2000-2016. doi: 10.1681/ASN.2019030218. Epub 2019 Sep 19.
4
Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program.
Nat Commun. 2019 Aug 26;10(1):3842. doi: 10.1038/s41467-019-11704-w.
5
Functional methylome analysis of human diabetic kidney disease.
JCI Insight. 2019 Jun 6;4(11). doi: 10.1172/jci.insight.128886.
7
A catalog of genetic loci associated with kidney function from analyses of a million individuals.
Nat Genet. 2019 Jun;51(6):957-972. doi: 10.1038/s41588-019-0407-x. Epub 2019 May 31.
10
Molecular insights into genome-wide association studies of chronic kidney disease-defining traits.
Nat Commun. 2018 Nov 22;9(1):4800. doi: 10.1038/s41467-018-07260-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验