Suppr超能文献

深度学习方法用于彗星分割和彗星分析图像分析。

Deep learning method for comet segmentation and comet assay image analysis.

机构信息

Department of R&D Center, Arontier Co., Ltd, Seoul, Republic of Korea.

Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea.

出版信息

Sci Rep. 2020 Nov 3;10(1):18915. doi: 10.1038/s41598-020-75592-7.

Abstract

Comet assay is a widely used method, especially in the field of genotoxicity, to quantify and measure DNA damage visually at the level of individual cells with high sensitivity and efficiency. Generally, computer programs are used to analyze comet assay output images following two main steps. First, each comet region must be located and segmented, and next, it is scored using common metrics (e.g., tail length and tail moment). Currently, most studies on comet assay image analysis have adopted hand-crafted features rather than the recent and effective deep learning (DL) methods. In this paper, however, we propose a DL-based baseline method, called DeepComet, for comet segmentation. Furthermore, we created a trainable and testable comet assay image dataset that contains 1037 comet assay images with 8271 manually annotated comet objects. From the comet segmentation test results with the proposed dataset, the DeepComet achieves high average precision (AP), which is an essential metric in image segmentation and detection tasks. A comparative analysis was performed between the DeepComet and the state-of-the-arts automatic comet segmentation programs on the dataset. Besides, we found that the DeepComet records high correlations with a commercial comet analysis tool, which suggests that the DeepComet is suitable for practical application.

摘要

彗星分析是一种广泛使用的方法,特别是在遗传毒性领域,用于以高灵敏度和高效率在单个细胞水平上直观地定量和测量 DNA 损伤。通常,使用计算机程序根据以下两个主要步骤分析彗星分析输出图像。首先,必须定位和分割每个彗星区域,然后使用常见的指标(例如,尾部长度和尾部矩)对其进行评分。目前,彗星分析图像分析的大多数研究都采用了手工制作的特征,而不是最新和有效的深度学习(DL)方法。然而,在本文中,我们提出了一种基于深度学习的基线方法,称为 DeepComet,用于彗星分割。此外,我们创建了一个可训练和可测试的彗星分析图像数据集,其中包含 1037 张彗星分析图像和 8271 个手动注释的彗星对象。从使用所提出数据集的彗星分割测试结果来看,DeepComet 实现了高平均精度(AP),这是图像分割和检测任务中的一个重要指标。在数据集上对 DeepComet 和最先进的自动彗星分割程序进行了比较分析。此外,我们发现 DeepComet 与商业彗星分析工具之间存在高度相关性,这表明 DeepComet 适用于实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验