Institut für Statistik, Universität Ulm, Ulm, Germany.
Novartis Pharma AG, Basel, Switzerland.
Biom J. 2021 Mar;63(3):650-670. doi: 10.1002/bimj.201900347. Epub 2020 Nov 4.
The assessment of safety is an important aspect of the evaluation of new therapies in clinical trials, with analyses of adverse events being an essential part of this. Standard methods for the analysis of adverse events such as the incidence proportion, that is the number of patients with a specific adverse event out of all patients in the treatment groups, do not account for both varying follow-up times and competing risks. Alternative approaches such as the Aalen-Johansen estimator of the cumulative incidence function have been suggested. Theoretical arguments and numerical evaluations support the application of these more advanced methodology, but as yet there is to our knowledge only insufficient empirical evidence whether these methods would lead to different conclusions in safety evaluations. The Survival analysis for AdVerse events with VarYing follow-up times (SAVVY) project strives to close this gap in evidence by conducting a meta-analytical study to assess the impact of the methodology on the conclusion of the safety assessment empirically. Here we present the rationale and statistical concept of the empirical study conducted as part of the SAVVY project. The statistical methods are presented in unified notation, and examples of their implementation in R and SAS are provided.
安全性评估是临床试验中评估新疗法的一个重要方面,其中不良事件分析是必不可少的一部分。标准的不良事件分析方法,如发生率比例,即治疗组中出现特定不良事件的患者数与所有患者数的比值,并不能同时考虑到不同的随访时间和竞争风险。已经提出了替代方法,如累积发生率函数的 Aalen-Johansen 估计器。理论论证和数值评估支持应用这些更先进的方法,但据我们所知,关于这些方法是否会导致安全性评估中得出不同的结论,目前只有有限的经验证据。针对随访时间不同的不良事件的生存分析(SAVVY)项目旨在通过进行荟萃分析研究来填补这一证据空白,以实证评估方法对安全性评估结论的影响。本文介绍了作为 SAVVY 项目一部分进行的实证研究的基本原理和统计概念。统计方法以统一的符号表示,并提供了在 R 和 SAS 中实现这些方法的示例。