Pfizer Pharma GmbH, Linkstraße 10, Berlin, 10785, Germany.
AMS Advanced Medical Services GmbH, Am Exerzierplatz 2, Mannheim, 68167, Germany.
BMC Med Res Methodol. 2023 Jul 13;23(1):168. doi: 10.1186/s12874-023-01985-7.
Safety is an essential part of the evaluation of new medications and competing risks that occur in most clinical trials are a well identified challenge in the analysis of adverse events. Two statistical frameworks exist to consider competing risks: the cause-specific and the subdistribution framework. To date, the application of the cause-specific framework is the standard practice in safety analyses. Here we analyze how the safety analysis results of new medications would be affected if instead of the cause-specific the subdistribution framework was chosen. We conducted a simulation study with 600 participants, equally allocated to verum and control groups and a 30 months follow-up period. Simulated trials were analyzed for safety in a competing risk (death) setting using both the cause-specific and subdistribution frameworks. Results show that comparing safety profiles in a subdistribution setting is always more pessimistic than in a cause-specific setting. For the group with the longest survival and a safety advantage in a cause-specific setting, the advantage either disappeared or a disadvantage was found in the subdistribution analysis setting. These observations are not contradictory but show different perspectives. To evaluate the safety of a new medication over its comparator, one needs to understand the origin of both the risks and the benefits associated with each therapy. These requirements are best met with a cause-specific framework. The subdistribution framework seems better suited for clinical prediction, and therefore more relevant for providers or payers, for example.
安全性是评估新药的重要组成部分,而大多数临床试验中存在的竞争风险是分析不良事件时面临的一个明确挑战。有两种统计框架可用于考虑竞争风险:特定原因和分布子框架。迄今为止,特定原因框架的应用是安全性分析的标准实践。在这里,我们分析了如果选择分布子框架而不是特定原因框架,新药的安全性分析结果将如何受到影响。我们对 600 名参与者进行了模拟研究,将参与者平均分配到实验组和对照组,随访时间为 30 个月。在竞争风险(死亡)环境中,使用特定原因和分布子框架对模拟试验进行安全性分析。结果表明,在分布子框架下比较安全性概况总是比在特定原因框架下更为悲观。对于在特定原因框架下生存时间最长且具有安全性优势的组,在分布子分析框架下,优势要么消失,要么发现劣势。这些观察结果并不矛盾,而是显示了不同的视角。为了评估新药相对于其对照药物的安全性,需要了解每种治疗方法相关风险和获益的来源。这些要求最符合特定原因框架。分布子框架似乎更适合临床预测,因此更适合提供者或支付者等。