Suppr超能文献

临床试验中新药物的安全性分析:存在竞争事件时,评估因果和亚分布框架差异的模拟研究。

Safety analysis of new medications in clinical trials: a simulation study to assess the differences between cause-specific and subdistribution frameworks in the presence of competing events.

机构信息

Pfizer Pharma GmbH, Linkstraße 10, Berlin, 10785, Germany.

AMS Advanced Medical Services GmbH, Am Exerzierplatz 2, Mannheim, 68167, Germany.

出版信息

BMC Med Res Methodol. 2023 Jul 13;23(1):168. doi: 10.1186/s12874-023-01985-7.

Abstract

Safety is an essential part of the evaluation of new medications and competing risks that occur in most clinical trials are a well identified challenge in the analysis of adverse events. Two statistical frameworks exist to consider competing risks: the cause-specific and the subdistribution framework. To date, the application of the cause-specific framework is the standard practice in safety analyses. Here we analyze how the safety analysis results of new medications would be affected if instead of the cause-specific the subdistribution framework was chosen. We conducted a simulation study with 600 participants, equally allocated to verum and control groups and a 30 months follow-up period. Simulated trials were analyzed for safety in a competing risk (death) setting using both the cause-specific and subdistribution frameworks. Results show that comparing safety profiles in a subdistribution setting is always more pessimistic than in a cause-specific setting. For the group with the longest survival and a safety advantage in a cause-specific setting, the advantage either disappeared or a disadvantage was found in the subdistribution analysis setting. These observations are not contradictory but show different perspectives. To evaluate the safety of a new medication over its comparator, one needs to understand the origin of both the risks and the benefits associated with each therapy. These requirements are best met with a cause-specific framework. The subdistribution framework seems better suited for clinical prediction, and therefore more relevant for providers or payers, for example.

摘要

安全性是评估新药的重要组成部分,而大多数临床试验中存在的竞争风险是分析不良事件时面临的一个明确挑战。有两种统计框架可用于考虑竞争风险:特定原因和分布子框架。迄今为止,特定原因框架的应用是安全性分析的标准实践。在这里,我们分析了如果选择分布子框架而不是特定原因框架,新药的安全性分析结果将如何受到影响。我们对 600 名参与者进行了模拟研究,将参与者平均分配到实验组和对照组,随访时间为 30 个月。在竞争风险(死亡)环境中,使用特定原因和分布子框架对模拟试验进行安全性分析。结果表明,在分布子框架下比较安全性概况总是比在特定原因框架下更为悲观。对于在特定原因框架下生存时间最长且具有安全性优势的组,在分布子分析框架下,优势要么消失,要么发现劣势。这些观察结果并不矛盾,而是显示了不同的视角。为了评估新药相对于其对照药物的安全性,需要了解每种治疗方法相关风险和获益的来源。这些要求最符合特定原因框架。分布子框架似乎更适合临床预测,因此更适合提供者或支付者等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4140/10339642/dde8f91f550e/12874_2023_1985_Fig1_HTML.jpg

相似文献

2
Analysis and design of randomised clinical trials involving competing risks endpoints.
Trials. 2011 May 19;12:127. doi: 10.1186/1745-6215-12-127.
8
Additive subdistribution hazards regression for competing risks data in case-cohort studies.
Biometrics. 2023 Dec;79(4):3010-3022. doi: 10.1111/biom.13821. Epub 2023 Jan 31.
10
Kidney Graft Failure and Patient Survival Modelling Based on Competing Risks Under Nonproportional Hazards.
Transplant Proc. 2022 May;54(4):940-947. doi: 10.1016/j.transproceed.2022.02.036. Epub 2022 Apr 18.

引用本文的文献

1
Methodological biases in observational hospital studies of COVID-19 treatment effectiveness: pitfalls and potential.
Front Med (Lausanne). 2024 Mar 21;11:1362192. doi: 10.3389/fmed.2024.1362192. eCollection 2024.

本文引用的文献

5
Methodologic Issues When Estimating Risks in Pharmacoepidemiology.
Curr Epidemiol Rep. 2016 Dec;3(4):285-296. doi: 10.1007/s40471-016-0089-1. Epub 2016 Sep 13.
6
The number of primary events per variable affects estimation of the subdistribution hazard competing risks model.
J Clin Epidemiol. 2017 Mar;83:75-84. doi: 10.1016/j.jclinepi.2016.11.017. Epub 2017 Jan 12.
7
Simulating survival data with predefined censoring rates for proportional hazards models.
Stat Med. 2017 Feb 28;36(5):838-854. doi: 10.1002/sim.7178. Epub 2016 Nov 21.
8
Statistical issues in the analysis of adverse events in time-to-event data.
Pharm Stat. 2016 Jul;15(4):297-305. doi: 10.1002/pst.1739. Epub 2016 Mar 1.
9
Introduction to the Analysis of Survival Data in the Presence of Competing Risks.
Circulation. 2016 Feb 9;133(6):601-9. doi: 10.1161/CIRCULATIONAHA.115.017719.
10
Competing risk bias was common in Kaplan-Meier risk estimates published in prominent medical journals.
J Clin Epidemiol. 2016 Jan;69:170-3.e8. doi: 10.1016/j.jclinepi.2015.07.006. Epub 2015 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验