Suppr超能文献

微柱表面的凝结结霜——微观粗糙度对冰生长的影响。

Condensation Frosting on Micropillar Surfaces - Effect of Microscale Roughness on Ice Propagation.

作者信息

Shen Yuchen, Zou Haoyang, Wang Sophie

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana- Champaign, Urbana, Illinois 61801-3028, United States.

出版信息

Langmuir. 2020 Nov 17;36(45):13563-13574. doi: 10.1021/acs.langmuir.0c02353. Epub 2020 Nov 4.

Abstract

Microscale surface structures have been widely explored as a promising tool for antifreezing or frost avoidance on heat transfer surfaces. Despite studies of many surface feature designs, the mechanisms associated with condensation freezing and ice propagation on microstructured surfaces have yet to be thoroughly elucidated, espectially when it comes to quantitative understanding. In this work, condensation freezing on circular micropillar surfaces is investigated, with varying pillar spacing and height (layout/microscale roughness) but a constant pillar diameter. The pillar layout is found to have significant effects on both liquid nucleation and neighboring droplet interactions, as reflected by the condensation droplet distribution prior to soilidification and eventually the freezing front propagation area velocity. In general, nucleation is preferred on the pillar top rather than the bottom of the pillared surface unless there is a large distance between the pillars. Interactions between neighboring droplets solely on pillar tops (or bottom surfaces) can induce heterogeneity in the droplet distribution and slow freezing front propagation. Based on the roles the pillars play in nucleation, droplet coalescence, and ice bridging, four different condensation states are identified and related to the layout of the pillars, and the freezing front area propagation velocity is found to be different in each state. The findings provide a quantitative basis for designing antifreezing surfaces, applicable to a wide range of thermal systems.

摘要

微尺度表面结构作为一种在传热表面上实现防冻或防霜的有前景的工具,已得到广泛研究。尽管对许多表面特征设计进行了研究,但与微结构表面上的凝结冻结和冰生长相关的机制尚未得到充分阐明,尤其是在定量理解方面。在这项工作中,研究了圆形微柱表面上的凝结冻结情况,微柱间距和高度(布局/微尺度粗糙度)各不相同,但柱径恒定。发现柱布局对液体成核和相邻液滴相互作用都有显著影响,这在凝固前的凝结液滴分布以及最终的冻结前沿传播面积速度中得到体现。一般来说,除非柱之间有很大距离,否则成核更倾向于在柱顶而非带柱表面的底部。仅在柱顶(或底面)上相邻液滴之间的相互作用会导致液滴分布不均匀,并减缓冻结前沿的传播。基于柱在成核、液滴聚结和冰桥接中所起的作用,确定了四种不同的凝结状态,并与柱的布局相关,且发现每种状态下的冻结前沿面积传播速度不同。这些发现为设计适用于广泛热系统的防冻表面提供了定量依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验