Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania.
J Neurophysiol. 2021 Feb 1;125(2):476-488. doi: 10.1152/jn.00471.2020. Epub 2020 Nov 4.
Activity-dependent changes of synapse strength have been extensively characterized at chemical synapses, but the relationship between physiological forms of activity and strength at electrical synapses remains poorly characterized and understood. For mammalian electrical synapses comprising hexamers of connexin36, physiological forms of neuronal activity in coupled pairs have thus far only been linked to long-term depression; activity that results in strengthening of electrical synapses has not yet been identified. Here, we performed dual whole-cell current-clamp recordings in acute slices of P11-P15 Sprague-Dawley rats of electrically coupled neurons of the thalamic reticular nucleus (TRN), a central brain area that regulates cortical input from and attention to the sensory surround. Using TTA-A2 to limit bursting, we show that tonic spiking in one neuron of a pair results in long-term potentiation of electrical synapses. We use experiments and computational modeling to show that the magnitude of plasticity expressed alters the functionality of the synapse. Potentiation is expressed asymmetrically, indicating that regulation of connectivity depends on the direction of use. Furthermore, calcium pharmacology and imaging indicate that potentiation depends on calcium flux. We thus propose a calcium-based activity rule for bidirectional plasticity of electrical synapse strength. Because electrical synapses dominate intra-TRN connectivity, these synapses and their activity-dependent modifications are key dynamic regulators of thalamic attention circuitry. More broadly, we speculate that bidirectional modifications of electrical synapses may be a widespread and powerful principle for ongoing, dynamic reorganization of neuronal circuitry across the brain. This work reveals a physiologically relevant form of activity pairing in coupled neurons that results in long-term potentiation of mammalian electrical synapses. These findings, in combination with previous work, allow the authors to propose a bidirectional calcium-based rule for plasticity of electrical synapses, similar to those demonstrated for chemical synapses. These new insights inform the field on how electrical synapse plasticity may modify the neural circuits that incorporate them.
活动依赖性突触强度变化在化学突触中得到了广泛的描述,但生理形式的活动与电突触强度之间的关系仍然知之甚少。对于由连接蛋白 36 组成的哺乳动物电突触,迄今为止,在耦合对中生理形式的神经元活动仅与长期抑郁有关;尚未确定导致电突触增强的活动。在这里,我们在 P11-P15 斯普拉格-道利大鼠的急性切片中进行了双全细胞电流钳记录,这些大鼠的电耦合神经元来自丘脑网状核(TRN),TRN 是调节皮质输入和对感觉环境注意力的大脑中枢区域。使用 TTA-A2 限制爆发,我们表明一对神经元中的紧张性尖峰导致电突触的长期增强。我们使用实验和计算模型表明,表达的可塑性幅度改变了突触的功能。增强作用呈不对称表达,表明连接的调节取决于使用方向。此外,钙药理学和成像表明,增强作用取决于钙通量。因此,我们提出了一种基于钙的电突触强度双向可塑性活动规则。由于电突触主导着 TRN 内的连接,这些突触及其活动依赖性修饰是丘脑注意回路的关键动态调节者。更广泛地说,我们推测电突触的双向修饰可能是大脑中神经元电路持续动态重组的一种广泛而强大的原则。这项工作揭示了耦合神经元中一种与生理相关的活动配对形式,导致了哺乳动物电突触的长期增强。这些发现与之前的工作相结合,使作者能够提出一种类似于化学突触的电突触可塑性的双向基于钙的规则。这些新的见解使人们了解电突触可塑性如何改变包含它们的神经电路。