Suppr超能文献

爆发式活动可改变电突触强度。

Bursts modify electrical synaptic strength.

机构信息

Center for Brain Science, Harvard University, 52 Oxford St. NWL 202, Cambridge, MA 02138, USA.

出版信息

Brain Res. 2012 Dec 3;1487:140-9. doi: 10.1016/j.brainres.2012.05.061. Epub 2012 Jul 5.

Abstract

Changes in synaptic strength resulting from neuronal activity have been described in great detail for chemical synapses, but the relationship between natural forms of activity and the strength of electrical synapses had previously not been investigated. The thalamic reticular nucleus (TRN), a brain area rich in gap junctional (electrical) synapses, regulates cortical attention, initiates sleep spindles, and participates in shifts between states of arousal. Plasticity of electrical synapses in the TRN may be a key mechanism underlying these processes. Recently, we demonstrated a novel activity-dependent form of long-term depression of electrical synapses in the TRN (Haas et al., 2011). Here we provide an overview of those findings and discuss them in broader context. Because gap junctional proteins are widely expressed in the mammalian brain, modification of synaptic strength is likely to be a widespread and powerful mechanism at electrical synapses throughout the brain.

摘要

神经元活动导致的突触强度变化在化学突触中已有详细描述,但自然活动形式与电突触强度之间的关系此前尚未得到研究。丘脑网状核(TRN)是一个富含缝隙连接(电)突触的脑区,调节皮质注意力、引发睡眠纺锤波,并参与觉醒状态之间的转换。TRN 中电突触的可塑性可能是这些过程的关键机制。最近,我们在 TRN 中证明了一种新型的电突触活动依赖性长时程压抑(Haas 等人,2011)。本文提供了这些发现的概述,并在更广泛的背景下进行了讨论。由于缝隙连接蛋白在哺乳动物大脑中广泛表达,因此突触强度的改变很可能是大脑中电突触的一种广泛而强大的机制。

相似文献

1
Bursts modify electrical synaptic strength.
Brain Res. 2012 Dec 3;1487:140-9. doi: 10.1016/j.brainres.2012.05.061. Epub 2012 Jul 5.
2
Activity-dependent long-term depression of electrical synapses.
Science. 2011 Oct 21;334(6054):389-93. doi: 10.1126/science.1207502.
3
Activity-dependent long-term potentiation of electrical synapses in the mammalian thalamus.
J Neurophysiol. 2021 Feb 1;125(2):476-488. doi: 10.1152/jn.00471.2020. Epub 2020 Nov 4.
4
Electrical synapses in the thalamic reticular nucleus.
J Neurosci. 2002 Feb 1;22(3):1002-9. doi: 10.1523/JNEUROSCI.22-03-01002.2002.
7
Functionally Distinct Circuits Are Linked by Heterocellular Electrical Synapses in the Thalamic Reticular Nucleus.
eNeuro. 2024 Jan 10;11(1). doi: 10.1523/ENEURO.0269-23.2023. Print 2024 Jan.
8
The Potential Role of Gap Junctional Plasticity in the Regulation of State.
Neuron. 2017 Mar 22;93(6):1275-1295. doi: 10.1016/j.neuron.2017.02.041.
9
Stability of electrical coupling despite massive developmental changes of intrinsic neuronal physiology.
J Neurosci. 2009 Aug 5;29(31):9761-70. doi: 10.1523/JNEUROSCI.4568-08.2009.
10
Beyond plasticity: the dynamic impact of electrical synapses on neural circuits.
Nat Rev Neurosci. 2019 May;20(5):253-271. doi: 10.1038/s41583-019-0133-5.

引用本文的文献

2
Rapid synaptic and gamma rhythm signature of mouse critical period plasticity.
Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2123182120. doi: 10.1073/pnas.2123182120. Epub 2023 Jan 4.
3
Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation.
Front Comput Neurosci. 2022 Oct 28;16:1006989. doi: 10.3389/fncom.2022.1006989. eCollection 2022.
5
Neural Interactions in Developing Rhythmogenic Spinal Networks: Insights From Computational Modeling.
Front Neural Circuits. 2020 Dec 23;14:614615. doi: 10.3389/fncir.2020.614615. eCollection 2020.
6
A Direct Comparison of Different Measures for the Strength of Electrical Synapses.
Front Cell Neurosci. 2019 Feb 12;13:43. doi: 10.3389/fncel.2019.00043. eCollection 2019.
7
Design principles of electrical synaptic plasticity.
Neurosci Lett. 2019 Mar 16;695:4-11. doi: 10.1016/j.neulet.2017.09.003. Epub 2017 Sep 8.
9
Short-term depression of gap junctional coupling in reticular thalamic neurons of absence epileptic rats.
J Physiol. 2016 Oct 1;594(19):5695-710. doi: 10.1113/JP271811. Epub 2016 Jun 16.
10
The contribution of electrical synapses to field potential oscillations in the hippocampal formation.
Front Neural Circuits. 2014 Apr 3;8:32. doi: 10.3389/fncir.2014.00032. eCollection 2014.

本文引用的文献

2
State-dependent modulation of gap junction signaling by the persistent sodium current.
Front Cell Neurosci. 2012 Jan 23;5:31. doi: 10.3389/fncel.2011.00031. eCollection 2011.
4
Temporal modulation of spike-timing-dependent plasticity.
Front Synaptic Neurosci. 2010 Jun 17;2:19. doi: 10.3389/fnsyn.2010.00019. eCollection 2010.
5
Spike-timing dependent plasticity in inhibitory circuits.
Front Synaptic Neurosci. 2010 Jun 21;2:8. doi: 10.3389/fnsyn.2010.00008. eCollection 2010.
6
Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons.
J Neurosci. 2010 Nov 17;30(46):15419-29. doi: 10.1523/JNEUROSCI.3636-10.2010.
8
Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling.
J Neurosci. 2009 Nov 25;29(47):14903-11. doi: 10.1523/JNEUROSCI.3436-09.2009.
10
The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20964-9. doi: 10.1073/pnas.0805408105. Epub 2008 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验