Suppr超能文献

探寻林丹脱氯酶 LinA 催化效率的来源。

Seeking the Source of Catalytic Efficiency of Lindane Dehydrochlorinase, LinA.

机构信息

Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.

School Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.

出版信息

J Phys Chem B. 2020 Nov 19;124(46):10353-10364. doi: 10.1021/acs.jpcb.0c08976. Epub 2020 Nov 4.

Abstract

Herein we present the results of an in-depth simulation study of LinA and its two variants. In our analysis, we combined the exploration of protein conformational dynamics with and without bound substrates (hexachlorocyclohexane (HCH) isomers) performed using molecular dynamics simulation followed by the extraction of the most frequently visited conformations and their characteristics with a detailed description of the interactions taking place in the active site between the respective HCH molecule and the first shell residues by using symmetry-adapted perturbation theory (SAPT) calculations. A detailed investigation of the conformational space of LinA substates has been accompanied by description of enzymatic catalytic steps carried out using a hybrid quantum mechanics/molecular mechanics (QM/MM) potential along with the computation of the potential of mean force (PMF) to estimate the free energy barriers for the studied transformations: dehydrochlorination of γ-, (-)-α-, and (+)-α-HCH by LinA-type I and -type II variants. The applied combination of computational techniques allowed us not only to characterize two LinA types but also to point to the most important differences between them and link their features to catalytic efficiency each of them possesses toward the respective ligand. More importantly it has been demonstrated that type I protein is more mobile, its active site has a larger volume, and the dehydrochlorination products are stabilized more strongly than in the case of type II enzyme, due to differences in the residues present in the active sites. Additionally, interaction energy calculations revealed very interesting patterns not predicted before but having the potential to be utilized in any attempts of improving LinA catalytic efficiency. On the basis of all these observations, LinA-type I protein seems to be more preorganized for the dehydrochlorination reaction it catalyzes than the type II variant.

摘要

在此,我们展示了对 LinA 及其两种变体进行深入模拟研究的结果。在我们的分析中,我们结合了使用分子动力学模拟对有和没有结合底物(六氯环己烷(HCH)异构体)的蛋白质构象动力学进行探索,随后通过提取最常访问的构象及其特征,并使用对称适应微扰理论(SAPT)计算详细描述活性位点中发生的相互作用,对 LinA 亚基的构象空间进行了详细研究。使用混合量子力学/分子力学(QM/MM)势能对酶催化步骤进行了描述,并计算了平均力势(PMF),以估计研究转化的自由能势垒:LinA 型 I 和 II 变体对γ-、(-)-α-和(+)-α-HCH 的脱氯化氢作用。应用的计算技术组合不仅使我们能够表征两种 LinA 类型,还能够指出它们之间的最重要差异,并将它们的特征与其对各自配体的催化效率联系起来。更重要的是,已经证明 I 型蛋白质更具流动性,其活性位点具有更大的体积,并且脱氯化氢产物的稳定性比 II 型酶更强,这是由于活性位点中存在的残基不同所致。此外,相互作用能计算揭示了以前没有预测到的非常有趣的模式,但具有提高 LinA 催化效率的任何尝试的潜力。基于所有这些观察结果,LinA 型 I 蛋白似乎比 II 型变体更适合其催化的脱氯化氢反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20a1/7681783/9863b5f5fd4d/jp0c08976_0008.jpg

相似文献

1
Seeking the Source of Catalytic Efficiency of Lindane Dehydrochlorinase, LinA.
J Phys Chem B. 2020 Nov 19;124(46):10353-10364. doi: 10.1021/acs.jpcb.0c08976. Epub 2020 Nov 4.
2
Reaction mechanism and stereochemistry of gamma-hexachlorocyclohexane dehydrochlorinase LinA.
J Biol Chem. 2001 Mar 16;276(11):7734-40. doi: 10.1074/jbc.M007452200. Epub 2000 Nov 30.
3
Novel LinA type 3 δ-hexachlorocyclohexane dehydrochlorinase.
Appl Environ Microbiol. 2015 Nov;81(21):7553-9. doi: 10.1128/AEM.01683-15. Epub 2015 Aug 21.
7
Crystal structure of γ-hexachlorocyclohexane Dehydrochlorinase LinA from Sphingobium japonicum UT26.
J Mol Biol. 2010 Oct 22;403(2):260-9. doi: 10.1016/j.jmb.2010.08.043. Epub 2010 Sep 8.
10
Dehydrochlorination of Hexachlorocyclohexanes Catalyzed by the LinA Dehydrohalogenase. A QM/MM Study.
J Phys Chem B. 2015 Dec 10;119(49):15100-9. doi: 10.1021/acs.jpcb.5b07538. Epub 2015 Nov 25.

本文引用的文献

1
Enantiomer and Carbon Isotope Fractionation of α-Hexachlorocyclohexane by Strain B90A and the Corresponding Enzymes.
Environ Sci Technol. 2019 Aug 6;53(15):8715-8724. doi: 10.1021/acs.est.9b01233. Epub 2019 Jul 19.
2
Assessing Aerobic Biotransformation of Hexachlorocyclohexane Isomers by Compound-Specific Isotope Analysis.
Environ Sci Technol. 2019 Jul 2;53(13):7419-7431. doi: 10.1021/acs.est.9b01007. Epub 2019 Jun 10.
3
Kinetic Isotope Effects of the Enzymatic Transformation of γ-Hexachlorocyclohexane by the Lindane Dehydrochlorinase Variants LinA1 and LinA2.
Environ Sci Technol. 2019 Mar 5;53(5):2353-2363. doi: 10.1021/acs.est.8b04234. Epub 2019 Feb 11.
4
CASTp 3.0: computed atlas of surface topography of proteins.
Nucleic Acids Res. 2018 Jul 2;46(W1):W363-W367. doi: 10.1093/nar/gky473.
5
Adaptive Finite Temperature String Method in Collective Variables.
J Phys Chem A. 2017 Dec 28;121(51):9764-9772. doi: 10.1021/acs.jpca.7b10842. Epub 2017 Dec 18.
6
Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability.
J Chem Theory Comput. 2017 Jul 11;13(7):3185-3197. doi: 10.1021/acs.jctc.7b00174. Epub 2017 Jun 6.
8
Networks of Dynamic Allostery Regulate Enzyme Function.
Structure. 2017 Feb 7;25(2):276-286. doi: 10.1016/j.str.2016.12.003. Epub 2017 Jan 12.
9
Contact- and distance-based principal component analysis of protein dynamics.
J Chem Phys. 2015 Dec 28;143(24):244114. doi: 10.1063/1.4938249.
10
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验