Suppr超能文献

用于多目标优化应用中纳什均衡策略的基于自组织映射的粒子群优化算法

Particle Swarm Optimization Algorithm With Self-Organizing Mapping for Nash Equilibrium Strategy in Application of Multiobjective Optimization.

作者信息

Zhao Chenhui, Guo Donghui

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):5179-5193. doi: 10.1109/TNNLS.2020.3027293. Epub 2021 Oct 27.

Abstract

In this article, the Nash equilibrium strategy is used to solve the multiobjective optimization problems (MOPs) with the aid of an integrated algorithm combining the particle swarm optimization (PSO) algorithm and the self-organizing mapping (SOM) neural network. The Nash equilibrium strategy addresses the MOPs by comparing decision variables one by one under different objectives. The randomness of the PSO algorithm gives full play to the advantages of parallel computing and improves the rate of comparison calculation. In order to avoid falling into local optimal solutions and increase the diversity of particles, a nonlinear recursive function is introduced to adjust the inertia weight, which is called the adaptive particle swarm optimization (APSO). In addition, the neighborhood relations of current particles are constructed by SOM, and the leading particles are selected from the neighborhood to guide the local and global search, so as to achieve convergence. Compared with several advanced algorithms based on the eight multiobjective standard test functions with different Pareto solution sets and Pareto front characteristics in examples, the proposed algorithm has a better performance.

摘要

在本文中,纳什均衡策略借助结合粒子群优化(PSO)算法和自组织映射(SOM)神经网络的集成算法来求解多目标优化问题(MOPs)。纳什均衡策略通过在不同目标下逐一比较决策变量来处理多目标优化问题。PSO算法的随机性充分发挥了并行计算的优势,提高了比较计算的速率。为了避免陷入局部最优解并增加粒子的多样性,引入了一个非线性递归函数来调整惯性权重,这被称为自适应粒子群优化(APSO)。此外,通过SOM构建当前粒子的邻域关系,并从邻域中选择领先粒子来指导局部和全局搜索,从而实现收敛。在实例中,与基于具有不同帕累托解集和帕累托前沿特征的八个多目标标准测试函数的几种先进算法相比,所提出的算法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验