Suppr超能文献

改进的纳什均衡求解捕食者-猎物粒子群优化算法。

An improved predator-prey particle swarm optimization algorithm for Nash equilibrium solution.

机构信息

School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Southwest China Research Institute of Electronic Equipment, Chengdu, Sichuan, China.

出版信息

PLoS One. 2021 Nov 24;16(11):e0260231. doi: 10.1371/journal.pone.0260231. eCollection 2021.

Abstract

Focusing on the problem incurred during particle swarm optimization (PSO) that tends to fall into local optimization when solving Nash equilibrium solutions of games, as well as the problem of slow convergence when solving higher order game pay off matrices, this paper proposes an improved Predator-Prey particle swarm optimization (IPP-PSO) algorithm based on a Predator-Prey particle swarm optimization (PP-PSO) algorithm. First, the convergence of the algorithm is advanced by improving the distribution of the initial predator and prey. By improving the inertia weight of both predator and prey, the problem of "precocity" of the algorithm is improved. By improving the formula used to represent particle velocity, the problems of local optimizations and slowed convergence rates are solved. By increasing pathfinder weight, the diversity of the population is increased, and the global search ability of the algorithm is improved. Then, by solving the Nash equilibrium solution of both a zero-sum game and a non-zero-sum game, the convergence speed and global optimal performance of the original PSO, the PP-PSO and the IPP-PSO are compared. Simulation results demonstrated that the improved Predator-Prey algorithm is convergent and effective. The convergence speed of the IPP-PSO is significantly higher than that of the other two algorithms. In the simulation, the PSO does not converge to the global optimal solution, and PP-PSO approximately converges to the global optimal solution after about 40 iterations, while IPP-PSO approximately converges to the global optimal solution after about 20 iterations. Furthermore, the IPP-PSO is superior to the other two algorithms in terms of global optimization and accuracy.

摘要

针对粒子群优化(PSO)在求解博弈的纳什均衡解时容易陷入局部最优以及求解高阶博弈收益矩阵时收敛速度较慢的问题,提出了一种基于捕食者-猎物粒子群优化(PP-PSO)算法的改进型捕食者-猎物粒子群优化(IPP-PSO)算法。首先,通过改进初始捕食者和猎物的分布来提高算法的收敛性。通过改进捕食者和猎物的惯性权重,解决了算法的“早熟”问题。通过改进粒子速度的表示公式,解决了局部最优和收敛速度慢的问题。通过增加探路者权重,增加了种群的多样性,提高了算法的全局搜索能力。然后,通过求解零和博弈和非零和博弈的纳什均衡解,比较了原始 PSO、PP-PSO 和 IPP-PSO 的收敛速度和全局最优性能。仿真结果表明,改进的捕食者-猎物算法是收敛有效的。IPP-PSO 的收敛速度明显高于其他两种算法。在仿真中,PSO 没有收敛到全局最优解,而 PP-PSO 在大约 40 次迭代后近似收敛到全局最优解,而 IPP-PSO 在大约 20 次迭代后近似收敛到全局最优解。此外,IPP-PSO 在全局优化和准确性方面优于其他两种算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3cd/8612571/9b6fe995540d/pone.0260231.g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验