Suppr超能文献

具有偏心荷载的独立高层建筑结构的神经网络控制:实验研究

Neural-Network Control of a Stand-Alone Tall Building-Like Structure With an Eccentric Load: An Experimental Investigation.

作者信息

Gao Hejia, He Wei, Zhang Liang, Sun Changyin

出版信息

IEEE Trans Cybern. 2022 Jun;52(6):4083-4094. doi: 10.1109/TCYB.2020.3006206. Epub 2022 Jun 16.

Abstract

This article develops a finite-dimensional dynamic model to describe a stand-alone tall building-like structure with an eccentric load by using the assumed mode method (AMM). To compensate for the dynamic uncertainties, a new neural-network (NN) control strategy is designed to suppress vibrations of the tall buildings. The output constraint on the angle of the pendulum is also considered, and such an angle can be ensured within the safety limit by incorporating a barrier Lyapunov function. The semiglobally uniform ultimate boundness (SGUUB) of the closed-loop system is proved via Lyapunov's stability. The simulation results reveal that the new NN strategy can effectively realize vibration suppression in the flexible beam and pendulum. The effectiveness of the new NN approach is further verified through the experiments on the Quanser smart structure.

摘要

本文采用假设模态法(AMM)建立了一个有限维动力学模型,以描述具有偏心荷载的独立高层建筑类结构。为补偿动态不确定性,设计了一种新的神经网络(NN)控制策略来抑制高层建筑的振动。还考虑了摆角的输出约束,通过引入障碍Lyapunov函数可确保该角度在安全范围内。通过Lyapunov稳定性证明了闭环系统的半全局一致最终有界性(SGUUB)。仿真结果表明,新的神经网络策略能够有效实现柔性梁和摆的振动抑制。通过在Quanser智能结构上进行的实验进一步验证了新神经网络方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验