Suppr超能文献

具有输入非线性和非对称输出约束的挠性航天器自适应神经网络控制

Adaptive Neural Network Control of a Flexible Spacecraft Subject to Input Nonlinearity and Asymmetric Output Constraint.

作者信息

Liu Yu, Chen Xiongbin, Wu Yilin, Cai He, Yokoi Hiroshi

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6226-6234. doi: 10.1109/TNNLS.2021.3072907. Epub 2022 Oct 27.

Abstract

This article focuses on the vibration reducing and angle tracking problems of a flexible unmanned spacecraft system subject to input nonlinearity, asymmetric output constraint, and system parameter uncertainties. Using the backstepping technique, a boundary control scheme is designed to suppress the vibration and regulate the angle of the spacecraft. A modified asymmetric barrier Lyapunov function is utilized to ensure that the output constraint is never transgressed. Considering the system robustness, neural networks are used to handle the system parameter uncertainties and compensate for the effect of input nonlinearity. With the proposed adaptive neural network control law, the stability of the closed-loop system is proved based on the Lyapunov analysis, and numerical simulations are carried out to show the validity of the developed control scheme.

摘要

本文聚焦于受输入非线性、非对称输出约束和系统参数不确定性影响的柔性无人航天器系统的减振和角度跟踪问题。利用反步法技术,设计了一种边界控制方案来抑制航天器的振动并调节其角度。采用改进的非对称障碍Lyapunov函数来确保输出约束永远不会被突破。考虑到系统的鲁棒性,使用神经网络来处理系统参数不确定性并补偿输入非线性的影响。基于所提出的自适应神经网络控制律,通过Lyapunov分析证明了闭环系统的稳定性,并进行了数值仿真以验证所开发控制方案的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验