Suppr超能文献

基于翅膀形态学学习的伊蚊自动分类方法。

An approach to automatic classification of Culicoides species by learning the wing morphology.

机构信息

Colegio de Ciencias e Ingenierías "El Politécnico", Universidad San Francisco de Quito USFQ, Quito, Ecuador.

Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales "COCIBA", Universidad San Francisco de Quito USFQ, Quito, Ecuador.

出版信息

PLoS One. 2020 Nov 4;15(11):e0241798. doi: 10.1371/journal.pone.0241798. eCollection 2020.

Abstract

Fast and accurate identification of biting midges is crucial in the study of Culicoides-borne diseases. In this work, we propose a two-stage method for automatically analyzing Culicoides (Diptera: Ceratopogonidae) species. First, an image preprocessing task composed of median and Wiener filters followed by equalization and morphological operations is used to improve the quality of the wing image in order to allow an adequate segmentation of particles of interest. Then, the segmentation of the zones of interest inside the biting midge wing is made using the watershed transform. The proposed method is able to produce optimal feature vectors that help to identify Culicoides species. A database containing wing images of C. obsoletus, C. pusillus, C. foxi, and C. insignis species was used to test its performance. Feature relevance analysis indicated that the mean of hydraulic radius and eccentricity were relevant for the decision boundary between C. obsoletus and C. pusillus species. In contrast, the number of particles and the mean of the hydraulic radius was relevant for deciding between C. foxi and C. insignis species. Meanwhile, for distinguishing among the four species, the number of particles and zones, and the mean of circularity were the most relevant features. The linear discriminant analysis classifier was the best model for the three experimental classification scenarios previously described, achieving averaged areas under the receiver operating characteristic curve of 0.98, 0.90, and 0.96, respectively.

摘要

快速准确地识别叮咬蠓对于研究媒介传播疾病至关重要。在这项工作中,我们提出了一种两阶段方法,用于自动分析库蠓(双翅目:蠓科)物种。首先,使用包含中值和维纳滤波器的图像预处理任务,然后进行均衡化和形态操作,以改善翅膀图像的质量,从而能够对感兴趣的粒子进行适当的分割。然后,使用分水岭变换对叮咬蠓翅膀内的感兴趣区域进行分割。所提出的方法能够生成有助于识别库蠓物种的最佳特征向量。使用包含 C. obsoletus、C. pusillus、C. foxi 和 C. insignis 物种翅膀图像的数据库来测试其性能。特征相关性分析表明,水力半径均值和偏心率与 C. obsoletus 和 C. pusillus 物种之间的决策边界相关。相比之下,颗粒数和水力半径均值与 C. foxi 和 C. insignis 物种之间的决策相关。同时,对于区分这四个物种,颗粒和区域的数量以及圆形度的均值是最相关的特征。线性判别分析分类器是前面描述的三个实验分类场景的最佳模型,平均获得了 0.98、0.90 和 0.96 的接收器操作特性曲线下面积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验