Suppr超能文献

利用统一医学语言系统作为罕见病数据标准化和协调的数据标准。

Leveraging the UMLS As a Data Standard for Rare Disease Data Normalization and Harmonization.

作者信息

Zhu Qian, Nguyen Dac-Trung, Sid Eric, Pariser Anne

机构信息

Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland, United States.

Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, Maryland, United States.

出版信息

Methods Inf Med. 2020 Aug;59(4-05):131-139. doi: 10.1055/s-0040-1718940. Epub 2020 Nov 4.

Abstract

OBJECTIVE

In this study, we aimed to evaluate the capability of the Unified Medical Language System (UMLS) as one data standard to support data normalization and harmonization of datasets that have been developed for rare diseases. Through analysis of data mappings between multiple rare disease resources and the UMLS, we propose suggested extensions of the UMLS that will enable its adoption as a global standard in rare disease.

METHODS

We analyzed data mappings between the UMLS and existing datasets on over 7,000 rare diseases that were retrieved from four publicly accessible resources: Genetic And Rare Diseases Information Center (GARD), Orphanet, Online Mendelian Inheritance in Men (OMIM), and the Monarch Disease Ontology (MONDO). Two types of disease mappings were assessed, (1) curated mappings extracted from those four resources; and (2) established mappings generated by querying the rare disease-based integrative knowledge graph developed in the previous study.

RESULTS

We found that 100% of OMIM concepts, and over 50% of concepts from GARD, MONDO, and Orphanet were normalized by the UMLS and accurately categorized into the appropriate UMLS semantic groups. We analyzed 58,636 UMLS mappings, which resulted in 3,876 UMLS concepts across these resources. Manual evaluation of a random set of 500 UMLS mappings demonstrated a high level of accuracy (99%) of developing those mappings, which consisted of 414 mappings of synonyms (82.8%), 76 are subtypes (15.2%), and five are siblings (1%).

CONCLUSION

The mapping results illustrated in this study that the UMLS was able to accurately represent rare disease concepts, and their associated information, such as genes and phenotypes, and can effectively be used to support data harmonization across existing resources developed on collecting rare disease data. We recommend the adoption of the UMLS as a data standard for rare disease to enable the existing rare disease datasets to support future applications in a clinical and community settings.

摘要

目的

在本研究中,我们旨在评估统一医学语言系统(UMLS)作为一种数据标准,以支持为罕见病开发的数据集的数据标准化和协调的能力。通过分析多种罕见病资源与UMLS之间的数据映射,我们提出了UMLS的建议扩展,这将使其能够作为罕见病的全球标准被采用。

方法

我们分析了UMLS与从四个可公开访问的资源中检索到的7000多种罕见病的现有数据集之间的数据映射:遗传和罕见病信息中心(GARD)、孤儿病网络(Orphanet)、在线人类孟德尔遗传(OMIM)和君主疾病本体(MONDO)。评估了两种类型的疾病映射,(1)从这四个资源中提取的人工策划映射;(2)通过查询先前研究中开发的基于罕见病的综合知识图谱生成的既定映射。

结果

我们发现100%的OMIM概念,以及超过50%的来自GARD、MONDO和Orphanet的概念通过UMLS进行了标准化,并被准确分类到适当的UMLS语义组中。我们分析了58636个UMLS映射,这些资源中共有3876个UMLS概念。对一组随机抽取的500个UMLS映射进行人工评估,结果表明这些映射的开发具有很高的准确性(99%),其中包括414个同义词映射(82.8%)、76个亚型映射(15.2%)和5个兄弟映射(1%)。

结论

本研究中的映射结果表明,UMLS能够准确表示罕见病概念及其相关信息,如基因和表型,并可有效地用于支持跨现有收集罕见病数据资源的数据协调。我们建议采用UMLS作为罕见病的数据标准,以使现有的罕见病数据集能够支持未来在临床和社区环境中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验