Suppr超能文献

使用标准摄像机检测、跟踪和计数上下地铁的人。

Detecting, Tracking and Counting People Getting On/Off a Metropolitan Train Using a Standard Video Camera.

机构信息

Zebra Technologies Corp., London WC2H 8TJ, UK.

School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK.

出版信息

Sensors (Basel). 2020 Nov 2;20(21):6251. doi: 10.3390/s20216251.

Abstract

The main source of delays in public transport systems (buses, trams, metros, railways) takes place in their stations. For example, a public transport vehicle can travel at 60 km per hour between stations, but its commercial speed (average en-route speed, including any intermediate delay) does not reach more than half of that value. Therefore, the problem that public transport operators must solve is how to reduce the delay in stations. From the perspective of transport engineering, there are several ways to approach this issue, from the design of infrastructure and vehicles to passenger traffic management. The tools normally available to traffic engineers are analytical models, microscopic traffic simulation, and, ultimately, real-scale laboratory experiments. In any case, the data that are required are number of passengers that get on and off from the vehicles, as well as the number of passengers waiting on platforms. Traditionally, such data has been collected manually by field counts or through videos that are then processed by hand. On the other hand, public transport networks, specially metropolitan railways, have an extensive monitoring infrastructure based on standard video cameras. Traditionally, these are observed manually or with very basic signal processing support, so there is significant scope for improving data capture and for automating the analysis of site usage, safety, and surveillance. This article shows a way of collecting and analyzing the data needed to feed both traffic models and analyze laboratory experimentation, exploiting recent intelligent sensing approaches. The paper presents a new public video dataset gathered using real-scale laboratory recordings. Part of this dataset has been annotated by hand, marking up head locations to provide a ground-truth on which to train and evaluate deep learning detection and tracking algorithms. Tracking outputs are then used to count people getting on and off, achieving a mean accuracy of 92% with less than 0.15% standard deviation on 322 mostly unseen dataset video sequences.

摘要

公共交通系统(公共汽车、电车、地铁、铁路)的延误主要发生在车站。例如,公共交通工具在站与站之间可以以每小时 60 公里的速度行驶,但它的商业速度(包括任何中间延误的平均途中速度)不到该值的一半。因此,公共交通运营商必须解决的问题是如何减少车站的延误。从交通工程的角度来看,有几种方法可以解决这个问题,从基础设施和车辆的设计到乘客流量管理。交通工程师通常可用的工具是分析模型、微观交通模拟,最终是实际规模的实验室实验。在任何情况下,所需的数据都是上下车的乘客数量,以及在站台上等待的乘客数量。传统上,这些数据是通过人工现场计数或通过人工处理的视频收集的。另一方面,公共交通网络,特别是地铁,有一个基于标准摄像机的广泛监测基础设施。传统上,这些都是手动观察或通过非常基本的信号处理支持来观察,因此在数据捕获和自动化站点使用、安全和监控分析方面有很大的改进空间。本文展示了一种利用最新智能传感方法来收集和分析用于交通模型和实验室实验分析所需数据的方法。本文提出了一种利用真实实验室记录收集和分析数据的新方法。该数据集的一部分已通过手动注释,标记头部位置,为训练和评估深度学习检测和跟踪算法提供真实数据。然后使用跟踪输出来计算上下车的人数,在 322 个大部分未见过的数据集视频序列上,平均准确率达到 92%,标准偏差小于 0.15%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c27a/7662571/e461cc89641c/sensors-20-06251-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验