Gissinger Jacob R, Jensen Benjamin D, Wise Kristopher E
Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309-0424, USA.
NASA Langley Research Center, Hampton, VA 23681-2199, USA.
Polymer (Guildf). 2017 Oct 16;128:211-217. doi: 10.1016/j.polymer.2017.09.038. Epub 2017 Sep 18.
An algorithm capable of incorporating multi-step reaction mechanisms into atomistic molecular dynamics (MD) simulations using traditional fixed valence force fields is proposed and implemented within the framework of LAMMPS (Large-scale Atomic Molecular Massively Parallel Simulator). This extension, referred to as , enables bonding topology modifications during a running MD simulation using pre- and post-reaction bonding templates to carry out a pre-specified reaction. Candidate reactants are first identified by interatomic separation, followed by the application of a generalized topology matching algorithm to confirm they match the pre-reaction template. This is followed by a topology conversion to match the post-reaction template and a dynamic relaxation to minimize high energy configurations. Two case studies, the condensation polymerization of nylon 6,6 and the formation of a highly-crosslinked epoxy, are simulated to demonstrate the robustness, stability, and speed of the algorithm. Improvements which could increase its utility are discussed.
提出了一种能够在传统固定价力场下将多步反应机制纳入原子分子动力学(MD)模拟的算法,并在大规模原子/分子大规模并行模拟器(LAMMPS)框架内实现。此扩展名为 ,能够在运行的MD模拟过程中使用反应前和反应后的键合模板修改键合拓扑结构,以执行预先指定的反应。候选反应物首先通过原子间距离来识别,随后应用广义拓扑匹配算法来确认它们与反应前模板匹配。接着进行拓扑转换以匹配反应后模板,并进行动态弛豫以最小化高能构型。通过模拟两个案例研究,即尼龙6,6的缩聚反应和高度交联环氧树脂的形成,来证明该算法的稳健性、稳定性和速度。还讨论了可以提高其效用的改进措施。