Suppr超能文献

智能反应模板:一种基于图形的自动生成分子动力学输入的方法。

Smart Reaction Templating: A Graph-Based Method for Automated Molecular Dynamics Input Generation.

作者信息

Konrad Julian, Meißner Robert

机构信息

Institute for Interface Physics and Engineering, Hamburg University of Technology, Am Irrgarten 3-9, 21073 Hamburg, Germany.

Institute of Surface Science, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.

出版信息

J Chem Inf Model. 2025 Jun 23;65(12):6038-6047. doi: 10.1021/acs.jcim.5c00445. Epub 2025 Jun 6.

Abstract

Accurately modeling chemical reactions in molecular dynamics simulations requires detailed pre- and postreaction templates, often created through labor-intensive manual workflows. This work introduces a Python-based algorithm that automates the generation of reaction templates for the LAMMPS REACTION package, leveraging graph-theoretical principles and subgraph isomorphism techniques. By representing molecular systems as mathematical graphs, the method enables the automated identification of conserved molecular domains, reaction sites, and atom mappings, significantly reducing manual effort. The algorithm was validated on three case studies: poly addition, poly condensation, and chain polymerization, demonstrating its ability to map conserved domains, identify reaction-initiating atoms, and resolve challenges such as symmetric reactants and indistinguishable atoms. Additionally, the generated templates were optimized for computational efficiency by retaining only essential reactive domains, ensuring scalability and consistency in high-throughput workflows for computational chemistry, materials science, and machine learning applications. Future work will focus on extending the method to mixed organic-inorganic systems, incorporating adaptive scoring mechanisms, and integrating quantum mechanical calculations to enhance its applicability.

摘要

在分子动力学模拟中精确建模化学反应需要详细的反应前和反应后模板,这些模板通常通过劳动密集型的手动工作流程创建。这项工作引入了一种基于Python的算法,该算法利用图论原理和子图同构技术,自动为LAMMPS REACTION软件包生成反应模板。通过将分子系统表示为数学图,该方法能够自动识别保守的分子域、反应位点和原子映射,显著减少了人工工作量。该算法在三个案例研究中得到验证:加聚反应、缩聚反应和链式聚合反应,证明了其映射保守域、识别反应起始原子以及解决对称反应物和不可区分原子等挑战的能力。此外,通过仅保留基本的反应域,对生成的模板进行了计算效率优化,确保了计算化学、材料科学和机器学习应用的高通量工作流程中的可扩展性和一致性。未来的工作将集中于将该方法扩展到有机-无机混合系统,纳入自适应评分机制,并整合量子力学计算以增强其适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验