Suppr超能文献

全息全卷积神经网络(Holo-UNet):用于活细胞高保真低光定量相位成像的全息图到全息图神经网络恢复技术

Holo-UNet: hologram-to-hologram neural network restoration for high fidelity low light quantitative phase imaging of live cells.

作者信息

Zhang Zhiduo, Zheng Yujie, Xu Tienan, Upadhya Avinash, Lim Yean Jin, Mathews Alexander, Xie Lexing, Lee Woei Ming

机构信息

Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, 31 North Road, Canberra, ACT 2601, Australia.

Research School of Computer Science, College of Engineering and Computer Science, The Australian National University, 108 North Road, Canberra, ACT 2601, Australia.

出版信息

Biomed Opt Express. 2020 Sep 9;11(10):5478-5487. doi: 10.1364/BOE.395302. eCollection 2020 Oct 1.

Abstract

Intensity shot noise in digital holograms distorts the quality of the phase images after phase retrieval, limiting the usefulness of quantitative phase microscopy (QPM) systems in long term live cell imaging. In this paper, we devise a hologram-to-hologram neural network, Holo-UNet, that restores high quality digital holograms under high shot noise conditions (sub-mW/cm intensities) at high acquisition rates (sub-milliseconds). In comparison to current phase recovery methods, Holo-UNet denoises the recorded hologram, and so prevents shot noise from propagating through the phase retrieval step that in turn adversely affects phase and intensity images. Holo-UNet was tested on 2 independent QPM systems without any adjustment to the hardware setting. In both cases, Holo-UNet outperformed existing phase recovery and block-matching techniques by ∼ 1.8 folds in phase fidelity as measured by SSIM. Holo-UNet is immediately applicable to a wide range of other high-speed interferometric phase imaging techniques. The network paves the way towards the expansion of high-speed low light QPM biological imaging with minimal dependence on hardware constraints.

摘要

数字全息图中的强度散粒噪声会在相位检索后扭曲相位图像的质量,限制了定量相位显微镜(QPM)系统在长期活细胞成像中的实用性。在本文中,我们设计了一种全息图到全息图的神经网络Holo-UNet,它能够在高散粒噪声条件下(亚毫瓦/平方厘米强度)以高采集速率(亚毫秒级)恢复高质量的数字全息图。与当前的相位恢复方法相比,Holo-UNet对记录的全息图进行去噪,从而防止散粒噪声在相位检索步骤中传播,进而对相位和强度图像产生不利影响。Holo-UNet在2个独立的QPM系统上进行了测试,且未对硬件设置进行任何调整。在这两种情况下,通过结构相似性指数测量,Holo-UNet在相位保真度方面比现有的相位恢复和块匹配技术高出约1.8倍。Holo-UNet可立即应用于广泛的其他高速干涉相位成像技术。该网络为扩展高速低光QPM生物成像铺平了道路,且对硬件约束的依赖最小。

相似文献

1
Holo-UNet: hologram-to-hologram neural network restoration for high fidelity low light quantitative phase imaging of live cells.
Biomed Opt Express. 2020 Sep 9;11(10):5478-5487. doi: 10.1364/BOE.395302. eCollection 2020 Oct 1.
2
Holo-UNet for High-Fidelity 3D Hologram Generation.
Sensors (Basel). 2024 Aug 25;24(17):5505. doi: 10.3390/s24175505.
5
High space-time bandwidth product imaging in low coherence quantitative phase microscopy.
Sci Rep. 2024 Apr 22;14(1):9191. doi: 10.1038/s41598-024-59874-y.
6
Influence of shot noise on phase measurement accuracy in digital holographic microscopy.
Opt Express. 2007 Jul 9;15(14):8818-31. doi: 10.1364/oe.15.008818.
7
8
Movies of cellular and sub-cellular motion by digital holographic microscopy.
Biomed Eng Online. 2006 Mar 23;5:21. doi: 10.1186/1475-925X-5-21.
10
Quantization noise and its reduction in lensless Fourier digital holography.
Appl Opt. 2011 Mar 1;50(7):B58-70. doi: 10.1364/AO.50.000B58.

引用本文的文献

1
Hybrid Iterating-Averaging Low Photon Budget Gabor Holographic Microscopy.
ACS Photonics. 2025 Jan 10;12(4):1771-1782. doi: 10.1021/acsphotonics.4c01863. eCollection 2025 Apr 16.
3
Low-intensity illumination for lensless digital holographic microscopy with minimized sample interaction.
Biomed Opt Express. 2022 Oct 10;13(11):5667-5682. doi: 10.1364/BOE.464367. eCollection 2022 Nov 1.
4
Imaging through diffuse media using multi-mode vortex beams and deep learning.
Sci Rep. 2022 Jan 28;12(1):1561. doi: 10.1038/s41598-022-05358-w.

本文引用的文献

1
Deep learning in holography and coherent imaging.
Light Sci Appl. 2019 Sep 11;8:85. doi: 10.1038/s41377-019-0196-0. eCollection 2019.
2
Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography.
Opt Express. 2019 Feb 18;27(4):4927-4943. doi: 10.1364/OE.27.004927.
3
Phase recovery and holographic image reconstruction using deep learning in neural networks.
Light Sci Appl. 2018 Feb 23;7:17141. doi: 10.1038/lsa.2017.141. eCollection 2018.
4
Low Photon Count Phase Retrieval Using Deep Learning.
Phys Rev Lett. 2018 Dec 14;121(24):243902. doi: 10.1103/PhysRevLett.121.243902.
5
Content-aware image restoration: pushing the limits of fluorescence microscopy.
Nat Methods. 2018 Dec;15(12):1090-1097. doi: 10.1038/s41592-018-0216-7. Epub 2018 Nov 26.
6
Phototoxicity revisited.
Nat Methods. 2018 Oct;15(10):751. doi: 10.1038/s41592-018-0170-4.
7
eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction.
Opt Express. 2018 Sep 3;26(18):22603-22614. doi: 10.1364/OE.26.022603.
8
Fast phase retrieval in off-axis digital holographic microscopy through deep learning.
Opt Express. 2018 Jul 23;26(15):19388-19405. doi: 10.1364/OE.26.019388.
9
Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy.
Biomed Opt Express. 2016 Jul 22;7(8):3111-23. doi: 10.1364/BOE.7.003111. eCollection 2016 Aug 1.
10
Influence of shot noise on phase measurement accuracy in digital holographic microscopy.
Opt Express. 2007 Jul 9;15(14):8818-31. doi: 10.1364/oe.15.008818.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验