Suppr超能文献

荧光强度和寿命氧化还原比率可检测T细胞中的代谢扰动。

Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells.

作者信息

Hu Linghao, Wang Nianchao, Cardona Elizabeth, Walsh Alex J

机构信息

Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX 77843, USA.

出版信息

Biomed Opt Express. 2020 Sep 16;11(10):5674-5688. doi: 10.1364/BOE.401935. eCollection 2020 Oct 1.

Abstract

The auto-fluorescent coenzymes reduced nicotinamide dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD) allow label-free detection of cellular metabolism. The optical redox ratio, which is traditionally computed as the ratio of NADH and FAD intensities, allows quantification of cell redox state. In addition to multiple formulations of the optical redox ratio from NADH and FAD intensity measurements, a fluorescence lifetime redox ratio (FLIRR) based on the fractions of protein-bound NADH and FAD was developed to overcome the limitations of experimental factors that influence fluorescence intensity measurements. In this paper, we compare fluorescence-intensity computations of the optical redox ratio with the fluorescence lifetime redox ratio for quiescent and activated T cells. Fluorescence lifetime images of NAD(P)H and FAD of T cells were acquired with a two-photon fluorescence lifetime microscope. Metabolic perturbation experiments, including inhibition of glycolysis, oxidative phosphorylation, glutaminolysis, and fatty acid synthesis revealed differences between the intensity and lifetime redox ratios. Statistical analysis reveals that the FLIRR has a lower standard deviation and skewness (two-tail T-test, P value = 0.05) than the intensity redox ratio. Correlation analysis revealed a weak relationship between FLIRR and intensity redox ratio for individual cells, with a stronger correlation identified for activated T cells (Linear regression, R-value = 0.450) than quiescent T cells (R-value = 0.172). Altogether, the results demonstrate that while both the fluorescence lifetime and intensity redox ratios resolve metabolic perturbations in T cells, the endpoints are influenced by different metabolic processes.

摘要

自身荧光辅酶还原型烟酰胺腺嘌呤二核苷酸(NADH)和氧化型黄素腺嘌呤二核苷酸(FAD)可实现细胞代谢的无标记检测。传统上通过计算NADH和FAD强度之比得出的光学氧化还原比值,能够对细胞氧化还原状态进行定量分析。除了基于NADH和FAD强度测量的多种光学氧化还原比值计算方法外,还开发了一种基于与蛋白质结合的NADH和FAD比例的荧光寿命氧化还原比值(FLIRR),以克服影响荧光强度测量的实验因素的局限性。在本文中,我们比较了静止和活化T细胞的光学氧化还原比值的荧光强度计算结果与荧光寿命氧化还原比值。使用双光子荧光寿命显微镜采集T细胞中NAD(P)H和FAD的荧光寿命图像。包括糖酵解、氧化磷酸化、谷氨酰胺分解和脂肪酸合成抑制在内的代谢扰动实验揭示了强度氧化还原比值和寿命氧化还原比值之间的差异。统计分析表明,FLIRR的标准差和偏度低于强度氧化还原比值(双尾T检验,P值 = 0.05)。相关性分析表明,单个细胞的FLIRR与强度氧化还原比值之间的关系较弱,活化T细胞(线性回归,R值 = 0.450)的相关性强于静止T细胞(R值 = 0.172)。总之,结果表明,虽然荧光寿命氧化还原比值和强度氧化还原比值都能解析T细胞中的代谢扰动,但终点受不同代谢过程的影响。

相似文献

1
Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells.
Biomed Opt Express. 2020 Sep 16;11(10):5674-5688. doi: 10.1364/BOE.401935. eCollection 2020 Oct 1.
3
Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
Cytometry A. 2019 Jan;95(1):110-121. doi: 10.1002/cyto.a.23711. Epub 2019 Jan 2.
4
Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
J Biomed Opt. 2020 Jan;25(1):1-16. doi: 10.1117/1.JBO.25.1.014510.
5
Autofluorescence Imaging to Evaluate Cellular Metabolism.
J Vis Exp. 2021 Nov 15(177). doi: 10.3791/63282.
6
Label-free spatially maintained measurements of metabolic phenotypes in cells.
Front Bioeng Biotechnol. 2023 Nov 28;11:1293268. doi: 10.3389/fbioe.2023.1293268. eCollection 2023.
8
Label-Free Optical Metabolic Imaging in Cells and Tissues.
Annu Rev Biomed Eng. 2023 Jun 8;25:413-443. doi: 10.1146/annurev-bioeng-071516-044730. Epub 2023 Apr 27.
10
Reduced nicotinamide adenine dinucleotide (NADH) fluorescence for the detection of cell death.
Anticancer Agents Med Chem. 2009 Nov;9(9):1012-7. doi: 10.2174/187152009789377718.

引用本文的文献

1
Optical imaging of metabolic dynamics in ALS under methionine regulation.
J Biomed Opt. 2025 Feb;30(Suppl 2):S23906. doi: 10.1117/1.JBO.30.S2.S23906. Epub 2025 May 24.
3
Autofluorescence lifetime imaging classifies human B and NK cell activation state.
Front Bioeng Biotechnol. 2025 Apr 4;13:1557021. doi: 10.3389/fbioe.2025.1557021. eCollection 2025.
4
Subclonal response heterogeneity to define cancer organoid therapeutic sensitivity.
Sci Rep. 2025 Apr 9;15(1):12072. doi: 10.1038/s41598-025-96204-2.
5
Illuminating Immunity: A Systematic Review of Immune Cell Autofluorescence.
J Biophotonics. 2025 Jun;18(6):e202400576. doi: 10.1002/jbio.202400576. Epub 2025 Mar 20.
6
Fluorescence lifetime imaging microscopy of endogenous fluorophores in health and disease.
J Muscle Res Cell Motil. 2025 Feb 13. doi: 10.1007/s10974-025-09689-9.
7
Multimodal Imaging Unveils the Impact of Nanotopography on Cellular Metabolic Activities.
Chem Biomed Imaging. 2024 Nov 18;2(12):825-834. doi: 10.1021/cbmi.4c00051. eCollection 2024 Dec 23.
9
Dual-mode OCT/fluorescence system for monitoring the morphology and metabolism of laser-printed 3D full-thickness skin equivalents.
Biomed Opt Express. 2024 Oct 10;15(11):6299-6312. doi: 10.1364/BOE.510610. eCollection 2024 Nov 1.
10
Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain.
Cell Rep. 2024 Sep 24;43(9):114723. doi: 10.1016/j.celrep.2024.114723. Epub 2024 Sep 13.

本文引用的文献

1
Classification of T-cell activation via autofluorescence lifetime imaging.
Nat Biomed Eng. 2021 Jan;5(1):77-88. doi: 10.1038/s41551-020-0592-z. Epub 2020 Jul 27.
2
Optimization of FLIM imaging, fitting and analysis for auto-fluorescent NAD(P)H and FAD in cells and tissues.
Methods Appl Fluoresc. 2020 Feb 5;8(2):024001. doi: 10.1088/2050-6120/ab6f25.
3
Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
Cytometry A. 2019 Jan;95(1):110-121. doi: 10.1002/cyto.a.23711. Epub 2019 Jan 2.
4
Metabolic cofactors NAD(P)H and FAD as potential indicators of cancer cell response to chemotherapy with paclitaxel.
Biochim Biophys Acta Gen Subj. 2018 Aug;1862(8):1693-1700. doi: 10.1016/j.bbagen.2018.04.021. Epub 2018 Apr 30.
5
Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon.
Sci Rep. 2018 Apr 3;8(1):5456. doi: 10.1038/s41598-018-23691-x.
6
Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast.
Sci Adv. 2018 Mar 7;4(3):eaap9302. doi: 10.1126/sciadv.aap9302. eCollection 2018 Mar.
8
Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
Antioxid Redox Signal. 2019 Feb 20;30(6):875-889. doi: 10.1089/ars.2017.7451. Epub 2018 Jan 30.
10
Autofluorescence imaging identifies tumor cell-cycle status on a single-cell level.
J Biophotonics. 2018 Jan;11(1). doi: 10.1002/jbio.201600276. Epub 2017 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验