Suppr超能文献

多模态成像揭示纳米拓扑结构对细胞代谢活动的影响。

Multimodal Imaging Unveils the Impact of Nanotopography on Cellular Metabolic Activities.

作者信息

Li Zhi, Sarikhani Einollah, Prayotamornkul Sirasit, Meganathan Dhivya Pushpa, Jahed Zeinab, Shi Lingyan

机构信息

Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States.

出版信息

Chem Biomed Imaging. 2024 Nov 18;2(12):825-834. doi: 10.1021/cbmi.4c00051. eCollection 2024 Dec 23.

Abstract

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform. This multimodal imaging platform, integrating two photon fluorescence (TPF) and stimulated Raman scattering (SRS) microscopy, allowed us to directly visualize and quantify metabolic activities of cells in 3D at the subcellular scale. We discovered that the nanopillar structure significantly reduced the cell spreading area and circularity compared to flat surfaces. Nanopillar-induced mechanical cues significantly modulate cellular metabolic activities with variations in nanopillar geometry further influencing these metabolic processes. Cells cultured on nanopillars exhibited reduced oxidative stress, decreased protein and lipid synthesis, and lower lipid unsaturation in comparison to those on flat substrates. Hierarchical clustering also revealed that pitch differences in the nanopillar had a more significant impact on cell metabolic activity than diameter variations. These insights improve our understanding of how engineered nanotopographies can be used to control cellular metabolism, offering possibilities for designing advanced cell culture platforms which can modulate cell behaviors and mimic natural cellular environment and optimize cell-based applications. By leveraging the unique metabolic effects of nanopillar arrays, one can develop more effective strategies for directing the fate of cells, enhancing the performance of cell-based therapies, and creating regenerative medicine applications.

摘要

纳米尺度的表面形貌是调节细胞与材料相互作用的有效方法,对细胞和细胞核形态及其功能有显著影响。然而,纳米形貌的机械和几何微环境所诱导的细胞代谢适应性变化仍知之甚少。在本研究中,我们使用无标记多模态光学成像平台研究了在工程化纳米柱基底上培养的细胞中的代谢活性。这个多模态成像平台集成了双光子荧光(TPF)和受激拉曼散射(SRS)显微镜,使我们能够在亚细胞尺度上直接可视化和量化三维细胞的代谢活性。我们发现,与平坦表面相比,纳米柱结构显著减小了细胞铺展面积和圆形度。纳米柱诱导的机械信号显著调节细胞代谢活性,纳米柱几何形状的变化进一步影响这些代谢过程。与在平坦基底上培养的细胞相比,在纳米柱上培养的细胞表现出氧化应激降低、蛋白质和脂质合成减少以及脂质不饱和度降低。层次聚类还显示,纳米柱的间距差异对细胞代谢活性的影响比直径变化更显著。这些见解增进了我们对如何利用工程化纳米形貌来控制细胞代谢的理解,为设计能够调节细胞行为、模拟自然细胞环境并优化基于细胞的应用的先进细胞培养平台提供了可能性。通过利用纳米柱阵列独特的代谢效应,人们可以开发更有效的策略来指导细胞命运、提高基于细胞的治疗性能并创造再生医学应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3f7/11672213/dd9ed4d2b15a/im4c00051_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验