Fernández R, Marcos-Vidal A, Gallego S, Beléndez A, Desco M, Ripoll J
Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.
I.U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Alicante, Spain.
Biomed Opt Express. 2020 Oct 1;11(10):6038-6048. doi: 10.1364/BOE.396013.
In the processes related to the development of cancer, there are different genetic and epigenetic events involved that result in structural changes of the affected cells. In the early stages of the disease, these changes occur at the nanoscale, remaining undetectable by conventional light microscopy, due to diffraction-limited resolution (∼250 - 550 nm). In this sense, a technique termed partial wave spectroscopy (PWS) allows the detection of these nanostructural changes by measuring a statistical parameter called disorder strength ( ). PWS uses a combination of a tunable filter and a camera to acquire the backscattering spectra for each pixel on the image. In this paper, we study and validate the possibility of obtaining a qualitative measurement of the disorder using the spectrum of the averaged spatial information. Instead of using spatial information and measuring sequentially spectral ranges, we measure the backscattered signal gathered by an optical fiber by means of a spectrograph. This will allow this method to be applied in systems where it is not possible to acquire a complete high resolution image for many spectral bands, while significantly enhancing speed.
在与癌症发展相关的过程中,涉及不同的基因和表观遗传事件,这些事件会导致受影响细胞的结构变化。在疾病的早期阶段,这些变化发生在纳米尺度,由于衍射极限分辨率(约250 - 550纳米),传统光学显微镜无法检测到。从这个意义上说,一种称为部分波谱学(PWS)的技术通过测量一个称为无序强度( )的统计参数来检测这些纳米结构变化。PWS使用可调谐滤波器和相机的组合来获取图像上每个像素的后向散射光谱。在本文中,我们研究并验证了使用平均空间信息的光谱获得无序定性测量的可能性。我们不是使用空间信息并顺序测量光谱范围,而是通过光谱仪测量由光纤收集的后向散射信号。这将使该方法能够应用于无法为许多光谱带获取完整高分辨率图像的系统,同时显著提高速度。