Suppr超能文献

通过光纤的背向散射光谱进行的定性无序测量。

Qualitative disorder measurements from backscattering spectra through an optical fiber.

作者信息

Fernández R, Marcos-Vidal A, Gallego S, Beléndez A, Desco M, Ripoll J

机构信息

Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.

I.U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Alicante, Spain.

出版信息

Biomed Opt Express. 2020 Oct 1;11(10):6038-6048. doi: 10.1364/BOE.396013.

Abstract

In the processes related to the development of cancer, there are different genetic and epigenetic events involved that result in structural changes of the affected cells. In the early stages of the disease, these changes occur at the nanoscale, remaining undetectable by conventional light microscopy, due to diffraction-limited resolution (∼250 - 550 nm). In this sense, a technique termed partial wave spectroscopy (PWS) allows the detection of these nanostructural changes by measuring a statistical parameter called disorder strength ( ). PWS uses a combination of a tunable filter and a camera to acquire the backscattering spectra for each pixel on the image. In this paper, we study and validate the possibility of obtaining a qualitative measurement of the disorder using the spectrum of the averaged spatial information. Instead of using spatial information and measuring sequentially spectral ranges, we measure the backscattered signal gathered by an optical fiber by means of a spectrograph. This will allow this method to be applied in systems where it is not possible to acquire a complete high resolution image for many spectral bands, while significantly enhancing speed.

摘要

在与癌症发展相关的过程中,涉及不同的基因和表观遗传事件,这些事件会导致受影响细胞的结构变化。在疾病的早期阶段,这些变化发生在纳米尺度,由于衍射极限分辨率(约250 - 550纳米),传统光学显微镜无法检测到。从这个意义上说,一种称为部分波谱学(PWS)的技术通过测量一个称为无序强度( )的统计参数来检测这些纳米结构变化。PWS使用可调谐滤波器和相机的组合来获取图像上每个像素的后向散射光谱。在本文中,我们研究并验证了使用平均空间信息的光谱获得无序定性测量的可能性。我们不是使用空间信息并顺序测量光谱范围,而是通过光谱仪测量由光纤收集的后向散射信号。这将使该方法能够应用于无法为许多光谱带获取完整高分辨率图像的系统,同时显著提高速度。

相似文献

1
Qualitative disorder measurements from backscattering spectra through an optical fiber.
Biomed Opt Express. 2020 Oct 1;11(10):6038-6048. doi: 10.1364/BOE.396013.
5
Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.
Acc Chem Res. 2018 Mar 20;51(3):697-705. doi: 10.1021/acs.accounts.7b00545. Epub 2018 Feb 14.
6
Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
Ultraschall Med. 2016 Feb;37(1):1-5. doi: 10.1055/s-0035-1567037. Epub 2016 Feb 12.
7
High-speed spectral nanocytology for early cancer screening.
J Biomed Opt. 2013 Nov;18(11):117002. doi: 10.1117/1.JBO.18.11.117002.
8
Fiber taper characterization by optical backscattering reflectometry.
Opt Express. 2017 Sep 18;25(19):22312-22327. doi: 10.1364/OE.25.022312.
10
Rapid spontaneous Raman light sheet microscopy using cw-lasers and tunable filters.
Biomed Opt Express. 2015 Aug 19;6(9):3449-61. doi: 10.1364/BOE.6.003449. eCollection 2015 Sep 1.

本文引用的文献

1
Correlating colorectal cancer risk with field carcinogenesis progression using partial wave spectroscopic microscopy.
Cancer Med. 2018 May;7(5):2109-2120. doi: 10.1002/cam4.1357. Epub 2018 Mar 23.
2
Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology.
Front Pharmacol. 2018 Feb 6;9:80. doi: 10.3389/fphar.2018.00080. eCollection 2018.
5
Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6372-E6381. doi: 10.1073/pnas.1608198113. Epub 2016 Oct 4.
6
Procedures for risk-stratification of lung cancer using buccal nanocytology.
Biomed Opt Express. 2016 Aug 31;7(9):3795-3810. doi: 10.1364/BOE.7.003795. eCollection 2016 Sep 1.
7
Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression.
Mod Pathol. 2015 Jan;28(1):14-29. doi: 10.1038/modpathol.2014.81. Epub 2014 Jun 13.
10
Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture.
Biophys J. 2010 Aug 4;99(3):989-96. doi: 10.1016/j.bpj.2010.05.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验