Suppr超能文献

细胞骨架在控制细胞纳米结构的无序强度中的作用。

Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture.

机构信息

Biomedical Engineering Department, Northwestern University, Evanston, Illinois, USA.

出版信息

Biophys J. 2010 Aug 4;99(3):989-96. doi: 10.1016/j.bpj.2010.05.023.

Abstract

Cytoskeleton is ubiquitous throughout the cell and is involved in important cellular processes such as cellular transport, signal transduction, gene transcription, cell-division, etc. Partial wave spectroscopic microscopy is a novel optical technique that measures the statistical properties of cell nanoscale organization in terms of the disorder strength. It has been found previously that the increase in the disorder strength of cell nanoarchitecture is one of the earliest events in carcinogenesis. In this study, we investigate the cellular components responsible for the differential disorder strength between two morphologically (and hence microscopically) similar but genetically altered human colon cancer cell lines, HT29 cells and Csk shRNA-transfected HT29 cells that exhibit different degrees of neoplastic aggressiveness. To understand the role of cytoskeleton in nanoarchitectural alterations, we performed selective drug treatment on the specific cytoskeletal components of these cell types and studied the effects of cytoskeletal organization on disorder strength differences. We report that altering the cell nanoarchitecture by disrupting cytoskeletal organization leads to the attenuation of the disorder strength differences between microscopically indistinguishable HT29 and CSK constructs. We therefore demonstrate that cytoskeleton plays a role in the control of cellular nanoscale disorder.

摘要

细胞骨架在整个细胞中无处不在,参与重要的细胞过程,如细胞运输、信号转导、基因转录、细胞分裂等。部分波谱显微镜是一种新的光学技术,它根据无序强度来测量细胞纳米级组织的统计特性。先前已经发现,细胞纳米结构无序强度的增加是癌变过程中的最早事件之一。在这项研究中,我们研究了两种形态(因此在显微镜下)相似但遗传改变的人结肠癌细胞系 HT29 细胞和 Csk shRNA 转染 HT29 细胞之间差异无序强度的细胞成分。为了了解细胞骨架在纳米结构改变中的作用,我们对这些细胞类型的特定细胞骨架成分进行了选择性药物处理,并研究了细胞骨架组织对无序强度差异的影响。我们报告说,通过破坏细胞骨架组织改变细胞纳米结构会导致在显微镜下无法区分的 HT29 和 CSK 结构之间的无序强度差异减弱。因此,我们证明细胞骨架在控制细胞纳米级无序方面发挥作用。

相似文献

1
Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture.
Biophys J. 2010 Aug 4;99(3):989-96. doi: 10.1016/j.bpj.2010.05.023.
5
Bacteroides fragilis toxin rearranges the actin cytoskeleton of HT29/C1 cells without direct proteolysis of actin or decrease in F-actin content.
Cell Motil Cytoskeleton. 1997;37(2):159-65. doi: 10.1002/(SICI)1097-0169(1997)37:2<159::AID-CM8>3.0.CO;2-3.
8
Cytoskeletal disassembly and cell rounding promotes adipogenesis from ES cells.
Stem Cell Rev Rep. 2010 Mar;6(1):74-85. doi: 10.1007/s12015-010-9115-8.
10
Interaction of the NG2 proteoglycan with the actin cytoskeleton.
J Cell Biochem. 1996 Dec 15;63(4):463-77. doi: 10.1002/(sici)1097-4644(19961215)63:4<463::aid-jcb8>3.0.co;2-r.

引用本文的文献

1
A computational framework for identifying cytoskeletal genes associated with age-related diseases.
Sci Rep. 2025 Apr 26;15(1):14590. doi: 10.1038/s41598-025-97363-y.
3
Multiscale optical phase fluctuations link disorder strength and fractal dimension of cell structure.
Biophys J. 2023 Apr 4;122(7):1390-1399. doi: 10.1016/j.bpj.2023.03.005. Epub 2023 Mar 5.
4
REVIEW ARTICLE Engineering bio-inks for 3D bioprinting cell mechanical microenvironment.
Int J Bioprint. 2022 Oct 29;9(1):632. doi: 10.18063/ijb.v9i1.632. eCollection 2023.
7
A Chemomechanical Model for Regulation of Contractility in the Embryonic Brain Tube.
J Elast. 2021 Aug;145(1-2):77-98. doi: 10.1007/s10659-020-09811-7. Epub 2021 Jan 20.
8
Qualitative disorder measurements from backscattering spectra through an optical fiber.
Biomed Opt Express. 2020 Oct 1;11(10):6038-6048. doi: 10.1364/BOE.396013.
9
Light scattering methods for tissue diagnosis.
Optica. 2019 Apr 20;6(4):479-489. doi: 10.1364/optica.6.000479.
10
Epigenetic downregulation of desmin in gall bladder cancer reveals its potential role in disease progression.
Indian J Med Res. 2020 Apr;151(4):311-318. doi: 10.4103/ijmr.IJMR_501_18.

本文引用的文献

2
Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy.
Cancer Res. 2009 Jul 1;69(13):5357-63. doi: 10.1158/0008-5472.CAN-08-3895. Epub 2009 Jun 23.
4
Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis.
Cancer Res. 2009 Feb 1;69(3):1199-204. doi: 10.1158/0008-5472.CAN-08-3079. Epub 2009 Jan 13.
5
Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells.
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20118-23. doi: 10.1073/pnas.0804723105. Epub 2008 Dec 10.
6
The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function.
Biomaterials. 2008 Oct;29(28):3836-46. doi: 10.1016/j.biomaterials.2008.06.002. Epub 2008 Jul 7.
7
Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus.
Appl Opt. 2001 Aug 20;40(24):3969-83. doi: 10.1364/ao.40.003969.
8
Karyometry of the colonic mucosa.
Cancer Epidemiol Biomarkers Prev. 2007 Dec;16(12):2704-16. doi: 10.1158/1055-9965.EPI-07-0595.
9
Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels.
Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17255-60. doi: 10.1073/pnas.0708669104. Epub 2007 Oct 23.
10
Epigenetic field for cancerization.
J Biochem Mol Biol. 2007 Mar 31;40(2):142-50. doi: 10.5483/bmbrep.2007.40.2.142.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验