Yildirim Tanju, Zhang Linglong, Neupane Guru Prakash, Chen Songsong, Zhang Jiawei, Yan Han, Hasan Md Mehedi, Yoshikawa Genki, Lu Yuerui
Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
Nanoscale. 2020 Nov 28;12(44):22366-22385. doi: 10.1039/d0nr06773c. Epub 2020 Nov 5.
Two-dimensional materials (2Dm) offer a unique insight into the world of quantum mechanics including van der Waals (vdWs) interactions, exciton dynamics and various other nanoscale phenomena. 2Dm are a growing family consisting of graphene, hexagonal-Boron Nitride (h-BN), transition metal dichalcogenides (TMDs), monochalcogenides (MNs), black phosphorus (BP), MXenes and 2D organic crystals such as small molecules (e.g., pentacene, C8 BTBT, perylene derivatives, etc.) and polymers (e.g., COF and MOF, etc.). They exhibit unique mechanical, electrical, optical and optoelectronic properties that are highly enhanced as the surface to volume ratio increases, resulting from the transition of bulk to the few- to mono- layer limit. Such unique attributes include the manifestation of highly tuneable bandgap semiconductors, reduced dielectric screening, highly enhanced many body interactions, the ability to withstand high strains, ferromagnetism, piezoelectric and flexoelectric effects. Using 2Dm for mechanical resonators has become a promising field in nanoelectromechanical systems (NEMS) for applications involving sensors and condensed matter physics investigations. 2Dm NEMS resonators react with their environment, exhibit highly nonlinear behaviour from tension induced stiffening effects and couple different physics domains. The small size and high stiffness of these devices possess the potential of highly enhanced force sensitivities for measuring a wide variety of un-investigated physical forces. This review highlights current research in 2Dm NEMS resonators from fundamental physics and an applications standpoint, as well as presenting future possibilities using these devices.
二维材料(2Dm)为量子力学世界提供了独特的见解,包括范德华(vdWs)相互作用、激子动力学和各种其他纳米尺度现象。二维材料是一个不断发展的家族,由石墨烯、六方氮化硼(h-BN)、过渡金属二硫属化物(TMDs)、单硫属化物(MNs)、黑磷(BP)、MXenes以及二维有机晶体组成,如小分子(例如并五苯、C8 BTBT、苝衍生物等)和聚合物(例如COF和MOF等)。随着从体相到少数层至单层极限的转变,它们表现出独特的机械、电学、光学和光电特性,这些特性会随着表面积与体积比的增加而显著增强。这些独特的属性包括高度可调谐带隙半导体的表现、降低的介电屏蔽、高度增强的多体相互作用、承受高应变的能力、铁磁性、压电和挠电效应。将二维材料用于机械谐振器已成为纳米机电系统(NEMS)中一个有前景的领域,用于涉及传感器和凝聚态物理研究的应用。二维材料NEMS谐振器与它们的环境相互作用,由于张力引起的硬化效应而表现出高度非线性行为,并耦合不同的物理领域。这些器件的小尺寸和高刚度具有极大增强力灵敏度的潜力,可用于测量各种未研究的物理力。本综述从基础物理和应用的角度突出了二维材料NEMS谐振器的当前研究,并展示了使用这些器件的未来可能性。