Suppr超能文献

深度学习重建肥胖患者平衡期 CT 图像。

Deep learning reconstruction of equilibrium phase CT images in obese patients.

机构信息

Diagnostic Radiology, Hiroshima University, Diagnostic Radiology, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.

出版信息

Eur J Radiol. 2020 Dec;133:109349. doi: 10.1016/j.ejrad.2020.109349. Epub 2020 Oct 28.

Abstract

PURPOSE

To compare abdominal equilibrium phase (EP) CT images of obese and non-obese patients to identify the reconstruction method that preserves the diagnostic value of images obtained in obese patients.

METHODS

We compared EP images of 50 obese patients whose body mass index (BMI) exceeded 25 (group 1) with EP images of 50 non-obese patients (BMI < 25, group 2). Group 1 images were subjected to deep learning reconstruction (DLR), hybrid iterative reconstruction (hybrid-IR), and model-based IR (MBIR), group 2 images to hybrid-IR; group 2 hybrid-IR images served as the reference standard. A radiologist recorded the standard deviation of attenuation in the paraspinal muscle as the image noise. The overall image quality was assessed by 3 other radiologists; they used a confidence scale ranging from 1 (unacceptable) to 5 (excellent). Non-inferiority and potential superiority were assessed.

RESULTS

With respect to the image noise, group 1 DLR- were superior to group 2 hybrid-IR images; group 1 hybrid-IR- and MBIR images were neither superior nor non-inferior to group 2 hybrid-IR images. The quality scores of only DLR images in group 1 were superior to hybrid-IR images of group 2 while the quality scores of group 1 hybrid-IR- and MBIR images were neither superior nor non-inferior to group 2 hybrid-IR images.

CONCLUSIONS

DLR preserved the quality of EP images obtained in obese patients.

摘要

目的

比较肥胖和非肥胖患者的腹部平衡期(EP)CT 图像,以确定能够保留肥胖患者图像诊断价值的重建方法。

方法

我们比较了 50 名体重指数(BMI)超过 25 的肥胖患者(组 1)和 50 名非肥胖患者(BMI<25,组 2)的 EP 图像。组 1 的图像分别进行深度学习重建(DLR)、混合迭代重建(hybrid-IR)和基于模型的重建(MBIR),组 2 的图像进行 hybrid-IR;组 2 的 hybrid-IR 图像作为参考标准。一名放射科医生记录了椎旁肌肉衰减的标准差作为图像噪声。另外 3 名放射科医生评估了整体图像质量;他们使用了一个从 1(不可接受)到 5(优秀)的置信度等级。评估了非劣效性和潜在优势。

结果

在图像噪声方面,组 1 的 DLR 图像优于组 2 的 hybrid-IR 图像;组 1 的 hybrid-IR 和 MBIR 图像既不优于也不比组 2 的 hybrid-IR 图像差。只有组 1 的 DLR 图像的质量评分优于组 2 的 hybrid-IR 图像,而组 1 的 hybrid-IR 和 MBIR 图像的质量评分既不优于也不比组 2 的 hybrid-IR 图像差。

结论

DLR 保留了肥胖患者 EP 图像的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验