Suppr超能文献

基于超高分辨率计算机断层扫描的滴注式胆管造影的深度学习重建。

Deep learning reconstruction of drip-infusion cholangiography acquired with ultra-high-resolution computed tomography.

机构信息

Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.

出版信息

Abdom Radiol (NY). 2020 Sep;45(9):2698-2704. doi: 10.1007/s00261-020-02508-4.

Abstract

PURPOSE

Deep learning reconstruction (DLR) introduces deep convolutional neural networks into the reconstruction flow. We examined the clinical applicability of drip-infusion cholangiography (DIC) acquired on an ultra-high-resolution CT (U-HRCT) scanner reconstructed with DLR in comparison to hybrid and model-based iterative reconstruction (hybrid-IR, MBIR).

METHODS

This retrospective, single-institution study included 30 patients seen between January 2018 and November 2019. A radiologist recorded the standard deviation of attenuation in the paraspinal muscle as the image noise and calculated the contrast-to-noise ratio (CNR) in the common bile duct. The overall visual image quality of the bile duct on thick-slab maximum intensity projections was assessed by two other radiologists and graded on a 5-point confidence scale ranging from 1 (not delineated) to 5 (clearly delineated). The difference among hybrid-IR, MBIR, and DLR images was compared.

RESULTS

The image noise was significantly lower on DLR than hybrid-IR and MBIR images and the CNR and the overall visual image quality of the bile duct were significantly higher on DLR than on hybrid-IR and MBIR images (all: p < 0.001).

CONCLUSION

DLR resulted in significant quantitative and qualitative improvement of DIC acquired with U-HRCT.

摘要

目的

深度学习重建(DLR)将深度卷积神经网络引入到重建流程中。我们研究了在超高分辨率 CT(U-HRCT)扫描仪上获取的点滴式胆管造影(DIC)与混合迭代重建(hybrid-IR)和基于模型的迭代重建(MBIR)重建后使用 DLR 的临床适用性。

方法

这是一项回顾性的单中心研究,共纳入了 2018 年 1 月至 2019 年 11 月期间就诊的 30 例患者。一名放射科医生记录了椎旁肌肉的衰减标准差作为图像噪声,并计算了胆总管的对比噪声比(CNR)。另外两名放射科医生对厚层最大强度投影上的胆管整体视觉图像质量进行评估,并使用 5 分置信度量表进行评分,范围为 1(未描绘)至 5(清晰描绘)。比较了混合迭代重建、MBIR 和 DLR 图像之间的差异。

结果

与混合迭代重建和 MBIR 图像相比,DLR 图像的噪声显著降低,而 DLR 图像的 CNR 和胆总管的整体视觉图像质量明显高于混合迭代重建和 MBIR 图像(均:p<0.001)。

结论

DLR 显著提高了在 U-HRCT 上获取的 DIC 的定量和定性质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验