Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Eur J Radiol. 2023 Aug;165:110914. doi: 10.1016/j.ejrad.2023.110914. Epub 2023 Jun 4.
To compare the noise power spectrum (NPS) properties and perform a qualitative analysis of hybrid iterative reconstruction (IR), model-based IR (MBIR), and deep learning-based reconstruction (DLR) at a similar noise level in clinical study and compare these outcomes with those in phantom study.
A Catphan phantom with an external body ring was used in the phantom study. In the clinical study, computed tomography (CT) examination data of 34 patients were reviewed. NPS was calculated from DLR, hybrid IR, and MBIR images. The noise magnitude ratio (NMR) and the central frequency ratio (CFR) were calculated from DLR, hybrid IR, and MBIR images relative to filtered back-projection images using NPS. Clinical images were independently reviewed by two radiologists.
In the phantom study, DLR with a mild level had a similar noise level as hybrid IR and MBIR with strong levels. In the clinical study, DLR with a mild level had a similar noise level as hybrid IR with standard and MBIR with strong levels. The NMR and CFR were 0.40 and 0.76 for DLR, 0.42 and 0.55 for hybrid IR, and 0.48 and 0.62 for MBIR. The visual inspection of the clinical DLR image was superior to that of the hybrid IR and MBIR images.
Deep learning-based reconstruction improves overall image quality with substantial noise reduction while maintaining image noise texture compared with the CT reconstruction techniques.
在相似噪声水平下,比较混合迭代重建(IR)、基于模型的 IR(MBIR)和基于深度学习的重建(DLR)的噪声功率谱(NPS)特性,并进行定性分析,并将这些结果与体模研究中的结果进行比较。
体模研究中使用了带有外部体环的 Catphan 体模。临床研究中,回顾了 34 名患者的 CT 检查数据。从 DLR、混合 IR 和 MBIR 图像中计算 NPS。使用 NPS 从 DLR、混合 IR 和 MBIR 图像相对于滤波反投影图像计算噪声幅度比(NMR)和中心频率比(CFR)。临床图像由两位放射科医生独立进行评估。
在体模研究中,轻度水平的 DLR 与强水平的混合 IR 和 MBIR 具有相似的噪声水平。在临床研究中,轻度水平的 DLR 与标准水平的混合 IR 和强水平的 MBIR 具有相似的噪声水平。NMR 和 CFR 分别为 0.40 和 0.76 用于 DLR、0.42 和 0.55 用于混合 IR、0.48 和 0.62 用于 MBIR。临床 DLR 图像的视觉检查优于混合 IR 和 MBIR 图像。
与 CT 重建技术相比,基于深度学习的重建在显著降低噪声的同时提高了整体图像质量,同时保持了图像噪声纹理。