Suppr超能文献

选择性过滤器离子结合亲和力决定钾通道失活。

Selectivity filter ion binding affinity determines inactivation in a potassium channel.

机构信息

School of Science, RMIT University, Melbourne, VIC 3001, Australia.

Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065.

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29968-29978. doi: 10.1073/pnas.2009624117. Epub 2020 Nov 5.

Abstract

Potassium channels can become nonconducting via inactivation at a gate inside the highly conserved selectivity filter (SF) region near the extracellular side of the membrane. In certain ligand-gated channels, such as BK channels and MthK, a Ca-activated K channel from , the SF has been proposed to play a role in opening and closing rather than inactivation, although the underlying conformational changes are unknown. Using X-ray crystallography, identical conductive MthK structures were obtained in wide-ranging K concentrations (6 to 150 mM), unlike KcsA, whose SF collapses at low permeant ion concentrations. Surprisingly, three of the SF's four binding sites remained almost fully occupied throughout this range, indicating high affinities (likely submillimolar), while only the central S2 site titrated, losing its ion at 6 mM, indicating low K affinity (∼50 mM). Molecular simulations showed that the MthK SF can also collapse in the absence of K, similar to KcsA, but that even a single K binding at any of the SF sites, except S4, can rescue the conductive state. The uneven titration across binding sites differs from KcsA, where SF sites display a uniform decrease in occupancy with K concentration, in the low millimolar range, leading to SF collapse. We found that ions were disfavored in MthK's S2 site due to weaker coordination by carbonyl groups, arising from different interactions with the pore helix and water behind the SF. We conclude that these differences in interactions endow the seemingly identical SFs of KcsA and MthK with strikingly different inactivating phenotypes.

摘要

钾通道可以通过在膜外侧面附近高度保守的选择性过滤器 (SF) 区域内的门控失活而变为非传导状态。在某些配体门控通道中,如 BK 通道和 MthK,一种来自 的 Ca 激活的 K 通道,SF 被认为在打开和关闭中起作用,而不是失活,尽管潜在的构象变化尚不清楚。使用 X 射线晶体学,在广泛的 K 浓度(6 至 150 mM)下获得了相同的导电 MthK 结构,与 KcsA 不同,KcsA 的 SF 在低渗透离子浓度下崩溃。令人惊讶的是,SF 的四个结合位点中有三个在整个范围内几乎完全被占据,表明具有高亲和力(可能亚毫摩尔),而只有中央 S2 位点滴定,在 6 mM 时失去其离子,表明对 K 的亲和力低(约 50 mM)。分子模拟表明,即使在没有 K 的情况下,MthK SF 也可以崩溃,类似于 KcsA,但即使在 SF 位点中的任何一个位点(除了 S4)结合单个 K,也可以挽救导电状态。与 KcsA 不同,在低毫摩尔范围内,SF 位点的结合位点的不均匀滴定显示出与 K 浓度的占有率均匀下降,导致 SF 崩溃。我们发现,由于 SF 后面的羰基与孔螺旋和水的相互作用不同,离子在 MthK 的 S2 位点中不利,导致配位较弱。我们得出的结论是,这些相互作用的差异赋予了 KcsA 和 MthK 的看似相同的 SF 具有截然不同的失活表型。

相似文献

1
Selectivity filter ion binding affinity determines inactivation in a potassium channel.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29968-29978. doi: 10.1073/pnas.2009624117. Epub 2020 Nov 5.
2
Interactions between selectivity filter and pore helix control filter gating in the MthK channel.
J Gen Physiol. 2023 Aug 7;155(8). doi: 10.1085/jgp.202213166. Epub 2023 Jun 15.
3
Conformational changes in the selectivity filter of the open-state KcsA channel: an energy minimization study.
Biophys J. 2008 Oct;95(7):3239-51. doi: 10.1529/biophysj.108.136556. Epub 2008 Jul 11.
4
Differential binding of monovalent cations to KcsA: Deciphering the mechanisms of potassium channel selectivity.
Biochim Biophys Acta Biomembr. 2017 May;1859(5):779-788. doi: 10.1016/j.bbamem.2017.01.014. Epub 2017 Jan 12.
5
Mechanism of activation at the selectivity filter of the KcsA K channel.
Elife. 2017 Oct 10;6:e25844. doi: 10.7554/eLife.25844.
6
Voltage-dependent inactivation gating at the selectivity filter of the MthK K+ channel.
J Gen Physiol. 2010 Nov;136(5):569-79. doi: 10.1085/jgp.201010507. Epub 2010 Oct 11.
7
Selectivity filter gating in large-conductance Ca(2+)-activated K+ channels.
J Gen Physiol. 2012 Mar;139(3):235-44. doi: 10.1085/jgp.201110748.
8
The voltage-dependent gate in MthK potassium channels is located at the selectivity filter.
Nat Struct Mol Biol. 2013 Feb;20(2):159-66. doi: 10.1038/nsmb.2473. Epub 2012 Dec 23.
9
Novel insights into K+ selectivity from high-resolution structures of an open K+ channel pore.
Nat Struct Mol Biol. 2010 Aug;17(8):1019-23. doi: 10.1038/nsmb.1865. Epub 2010 Aug 1.
10
Selective exclusion and selective binding both contribute to ion selectivity in KcsA, a model potassium channel.
J Biol Chem. 2017 Sep 15;292(37):15552-15560. doi: 10.1074/jbc.M117.795807. Epub 2017 Aug 4.

引用本文的文献

1
High-Throughput MicroED for Probing Ion Channel Dynamics.
Adv Sci (Weinh). 2025 Aug;12(30):e04881. doi: 10.1002/advs.202504881. Epub 2025 May 29.
2
Effective polarization in potassium channel simulations: Ion conductance, occupancy, voltage response, and selectivity.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2423866122. doi: 10.1073/pnas.2423866122. Epub 2025 May 20.
3
Preorganized Electric Fields in Voltage-Gated Sodium Channels.
Chembiochem. 2025 May 27;26(10):e202500314. doi: 10.1002/cbic.202500314. Epub 2025 May 21.
4
Molecular insights into the rescue mechanism of an HERG activator against severe LQT2 mutations.
J Biomed Sci. 2025 Apr 7;32(1):40. doi: 10.1186/s12929-025-01134-w.
5
Potassium dependent structural changes in the selectivity filter of HERG potassium channels.
Nat Commun. 2024 Aug 29;15(1):7470. doi: 10.1038/s41467-024-51208-w.
6
Do selectivity filter carbonyls in K channels flip away from the pore? Two-dimensional infrared spectroscopy study.
J Struct Biol X. 2024 Jul 15;10:100108. doi: 10.1016/j.yjsbx.2024.100108. eCollection 2024 Dec.
7
Selectivity filter mutations shift ion permeation mechanism in potassium channels.
PNAS Nexus. 2024 Jul 5;3(7):pgae272. doi: 10.1093/pnasnexus/pgae272. eCollection 2024 Jul.
8
Structural Insights and Influence of Terahertz Waves in Midinfrared Region on Kv1.2 Channel Selectivity Filter.
ACS Omega. 2024 Feb 12;9(8):9702-9713. doi: 10.1021/acsomega.3c09801. eCollection 2024 Feb 27.
9
Calcium-gated potassium channel blockade via membrane-facing fenestrations.
Nat Chem Biol. 2024 Jan;20(1):52-61. doi: 10.1038/s41589-023-01406-2. Epub 2023 Aug 31.
10
Probing Ion Configurations in the KcsA Selectivity Filter with Single-Isotope Labels and 2D IR Spectroscopy.
J Am Chem Soc. 2023 Aug 23;145(33):18529-18537. doi: 10.1021/jacs.3c05339. Epub 2023 Aug 14.

本文引用的文献

1
Lipid-protein interactions modulate the conformational equilibrium of a potassium channel.
Nat Commun. 2020 May 1;11(1):2162. doi: 10.1038/s41467-020-15741-8.
2
Ball-and-chain inactivation in a calcium-gated potassium channel.
Nature. 2020 Apr;580(7802):288-293. doi: 10.1038/s41586-020-2116-0. Epub 2020 Mar 18.
3
Molecular mechanism of a potassium channel gating through activation gate-selectivity filter coupling.
Nat Commun. 2019 Nov 26;10(1):5366. doi: 10.1038/s41467-019-13227-w.
4
The conduction pathway of potassium channels is water free under physiological conditions.
Sci Adv. 2019 Jul 31;5(7):eaaw6756. doi: 10.1126/sciadv.aaw6756. eCollection 2019 Jul.
5
Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation.
Chem Rev. 2019 Jul 10;119(13):7737-7832. doi: 10.1021/acs.chemrev.8b00630. Epub 2019 Jun 27.
6
Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel.
J Gen Physiol. 2018 Oct 1;150(10):1408-1420. doi: 10.1085/jgp.201812082. Epub 2018 Aug 2.
7
Direct knock-on of desolvated ions governs strict ion selectivity in K channels.
Nat Chem. 2018 Aug;10(8):813-820. doi: 10.1038/s41557-018-0105-9. Epub 2018 Jul 20.
8
Inverted allosteric coupling between activation and inactivation gates in K channels.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5426-5431. doi: 10.1073/pnas.1800559115. Epub 2018 May 7.
9
Mechanism of activation at the selectivity filter of the KcsA K channel.
Elife. 2017 Oct 10;6:e25844. doi: 10.7554/eLife.25844.
10
Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy.
Science. 2016 Sep 2;353(6303):1040-1044. doi: 10.1126/science.aag1447.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验