Institute for Research in Immunology and Cancer, Université de Montréal, QC, Canada.
Programme de Biologie Moléculaire, Université de Montréal, QC, Canada.
FEBS J. 2021 Jun;288(11):3478-3506. doi: 10.1111/febs.15622. Epub 2020 Dec 28.
Candida albicans is a pathogenic fungus that causes systemic infections and mortality in immunosuppressed individuals. We previously showed that deacetylation of histone H3 lysine 56 by Hst3 is essential for C. albicans viability. Hst3 is a fungal-specific NAD -dependent protein deacetylase of the sirtuin family. In vivo, supraphysiological concentrations of nicotinamide (NAM) are required for Hst3 inhibition and cytotoxicity. This underscores the importance of identifying mechanisms by which C. albicans can modulate intracellular NAM concentrations. For the first time in a pathogenic fungus, we combine genetics, heavy isotope labeling, and targeted quantitative metabolomics to identify genes, pathways, and mechanisms by which C. albicans can reduce the cytotoxicity of high NAM concentrations. We discovered three distinct fates for supraphysiological NAM concentrations. First, upon transient exposure to NAM, high intracellular NAM concentrations rapidly return near the physiological levels observed in cells that are not exposed to NAM. Second, during the first step of a fungal-specific NAM salvage pathway, NAM is converted into nicotinic acid, a metabolite that cannot inhibit the sirtuin Hst3. Third, we provide evidence that NAM enters the NAD metabolome through a NAM exchange reaction that contributes to NAM-mediated inhibition of sirtuins. However, in contrast to the other fates of NAM, the NAM exchange reaction cannot cause a net decrease in the intracellular concentration of NAM. Therefore, this reaction cannot enhance resistance to NAM. In summary, we demonstrate that C. albicans possesses at least two mechanisms to attenuate the cytotoxicity of pharmacological NAM concentrations. It seems likely that those two mechanisms of resistance to cytotoxic NAM concentrations are conserved in many other pathogenic fungi.
白色念珠菌是一种致病性真菌,会导致免疫抑制个体发生全身感染和死亡。我们之前曾表明,Hst3 对组蛋白 H3 赖氨酸 56 的去乙酰化作用对于白色念珠菌的生存能力至关重要。Hst3 是真菌特异性的 NAD 依赖性 sirtuin 家族蛋白去乙酰化酶。在体内,需要高于生理浓度的烟酰胺(NAM)才能抑制 Hst3 并产生细胞毒性。这凸显了鉴定白色念珠菌调节细胞内 NAM 浓度的机制的重要性。这是首次在致病性真菌中,我们结合遗传学、重同位素标记和靶向定量代谢组学来鉴定白色念珠菌降低高 NAM 浓度细胞毒性的基因、途径和机制。我们发现了三种截然不同的高 NAM 浓度命运。首先,在短暂暴露于 NAM 后,高细胞内 NAM 浓度迅速恢复到接近未暴露于 NAM 的细胞中观察到的生理水平。其次,在真菌特异性 NAM 回收途径的第一步中,NAM 被转化为烟酸,这是一种不能抑制 sirtuin Hst3 的代谢物。第三,我们提供的证据表明,NAM 通过 NAM 交换反应进入 NAD 代谢组,该反应有助于 NAM 介导的对 sirtuins 的抑制。然而,与 NAM 的其他命运不同,NAM 交换反应不能导致细胞内 NAM 浓度的净降低。因此,该反应不能增强对 NAM 的抗性。总之,我们证明白色念珠菌至少有两种机制来减轻药理 NAM 浓度的细胞毒性。很可能许多其他致病性真菌都具有抵抗细胞毒性 NAM 浓度的这两种机制。