Hegedüs Michal, Achimovičová Marcela, Hui Hongjue, Guélou Gabin, Lemoine Pierric, Fourati Ismail, Juraszek Jean, Malaman B, BalᎠPeter, Guilmeau Emmanuel
Synthon, s.r.o., Brněnská 32, 678 01 Blansko, Czech Republic.
Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
Dalton Trans. 2020 Nov 17;49(44):15828-15836. doi: 10.1039/d0dt03368e.
A pristine colusite Cu26V2Sn6S32 was successfully synthesised on a 100 g scale via a mechanochemical reaction in an industrial eccentric vibratory ball mill followed by spark plasma sintering (SPS) at 873 K. The milling of elemental precursors from 1 up to 12 hours was performed and the prepared samples were investigated in detail by X-ray powder diffraction, Mössbauer spectroscopy, scanning electron microscopy, and thermoelectric property measurements. The results point to the formation of a high purity and high crystallinity non-exsoluted colusite phase after the SPS process (P4[combining macron]3n, a = 10.7614(1) Å) in the case of a 12 h milled sample. In comparison, samples milled for 1-6 h displayed small quantities of binary Cu-S phases and vanadium core-shell inclusions, leading to a V-poor/Sn-rich colusite with a higher degree of structural disorder. These samples exhibit lower electrical conductivity and Seebeck coefficient while an increase in the total thermal conductivity is observed. This phenomenon is explained by a higher reactivity and grain size reduction upon prolonged milling and by a weak evolution of the chemical composition from a partly disordered V-poor/Sn-rich colusite phase to a well-ordered stoichiometric Cu26V2Sn6S32 colusite, which leads to a decrease in carrier concentration. For all samples, the calculated PF values, around 0.7-0.8 mW m-1 K-2 at 700 K, are comparable to the values previously achieved for mechanochemically synthesised Cu26V2Sn6S32 in laboratory mills. This approach thus serves as an example of scaling-up possibility for sulphur-based TE materials and supports their future large-scale deployment.
通过在工业偏心振动球磨机中进行机械化学反应,随后在873 K下进行放电等离子烧结(SPS),成功地以100 g规模合成了纯净的硫锡铜矿Cu26V2Sn6S32。对元素前驱体进行了1至12小时的球磨,并通过X射线粉末衍射、穆斯堡尔光谱、扫描电子显微镜和热电性能测量对制备的样品进行了详细研究。结果表明,对于球磨12小时的样品,在SPS过程后形成了高纯度和高结晶度的未析出硫锡铜矿相(P4[combining macron]3n,a = 10.7614(1) Å)。相比之下,球磨1至6小时的样品显示出少量的二元Cu-S相和钒核壳包裹体,导致形成结构无序度较高的贫钒/富锡硫锡铜矿。这些样品的电导率和塞贝克系数较低,同时观察到总热导率增加。这种现象可以通过长时间球磨后更高的反应活性和晶粒尺寸减小以及化学成分从部分无序的贫钒/富锡硫锡铜矿相到有序化学计量比的Cu26V2Sn6S32硫锡铜矿的微弱演变来解释,这导致载流子浓度降低。对于所有样品,在700 K时计算得到的功率因子值约为0.7 - 0.8 mW m-1 K-2,与之前在实验室球磨机中通过机械化学合成的Cu26V2Sn6S32的值相当。因此,这种方法是硫基热电材料扩大规模可能性的一个例子,并支持它们未来的大规模应用。