Laboratory of Wind Energy Management and Waste Energy Recovery (LMEEVED), Research and Technology Center of Energy (CRTEn), B.P. 95, 2050, Hammam-Lif, Tunisia.
Laboratory of Microbial Ecology and Technology (LETMi), National Institute of Applied Sciences and Technology (INSAT), Carthage University, 2 Boulevard de la terre, BP 676, 1080, Tunis, Tunisia.
Environ Sci Pollut Res Int. 2021 Feb;28(8):9777-9791. doi: 10.1007/s11356-020-11400-z. Epub 2020 Nov 6.
In this study, municipal sewage sludge (MSS) is converted simultaneously into renewable biofuels (bio-oil, syngas) and high value-added products (biochar) using a fixed bed pyrolyzer. This work examines the combined effect of two factors: final pyrolysis temperature (°C) and MSS moisture content (%) on pyrogenic product yields and characteristics. A centered composite experimental design (CCD) is established for pyrolysis process optimization by adopting the response surface methodology (RSM). The statistical results indicate that the optimal conditions considering all studied factors and responses are 550 °C as final pyrolysis temperature and 15% as MSS moisture content. In these optimal conditions, biofuels yield is around 48 wt%, whereas biochar yield is about 52 wt%. The pyrolysis products characterizations reveal that (i) pyrolytic oil has a complex molecular composition rich with n-alkanes, n-alkenes, carboxylic acids, and aromatic compounds; (ii) bio-oil presents a high-energy content (high heating value HHV around 30.6 MJ/kg); (iii) syngas mixture has a good calorific value (HHV up to 8 MJ/kg), which could be used as renewable energy vector or for pyrolysis reactor heating; and (iv) biochar residue has good aliphatic and oxygenated group contents favoring its application as biofertilizer. These findings suggest that MSS conversion into biofuels and biochar is an appropriate approach for MSS treatment. MSS-to-energy could be proposed as an element for circular economy concept due to its effectiveness in producing high value-added and sustainable products and reducing environmental problems linked to MSS disposal.
在这项研究中,市政污水污泥 (MSS) 通过固定床热解器同时转化为可再生生物燃料(生物油、合成气)和高附加值产品(生物炭)。这项工作研究了两个因素的综合影响:最终热解温度(°C)和 MSS 水分含量(%)对热解产物产率和特性的影响。采用响应面法(RSM),通过中心复合实验设计(CCD)对热解过程进行优化。统计结果表明,考虑所有研究因素和响应的最佳条件为最终热解温度为 550°C,MSS 水分含量为 15%。在这些最佳条件下,生物燃料产率约为 48wt%,而生物炭产率约为 52wt%。热解产物的特性表明:(i)热解油具有复杂的分子组成,富含正烷烃、正烯烃、羧酸和芳香族化合物;(ii)生物油具有较高的能量含量(高热值 HHV 约为 30.6MJ/kg);(iii)合成气混合物具有良好的热值(HHV 高达 8MJ/kg),可作为可再生能源载体或用于热解反应器加热;(iv)生物炭残渣具有良好的脂肪族和含氧基团含量,有利于将其用作生物肥料。这些发现表明,MSS 转化为生物燃料和生物炭是处理 MSS 的一种合适方法。MSS 到能源的转化可以作为循环经济概念的一个要素,因为它可以有效地生产高附加值和可持续的产品,并减少与 MSS 处置相关的环境问题。