Suppr超能文献

基于强化学习的拓扑量子编译

Topological Quantum Compiling with Reinforcement Learning.

作者信息

Zhang Yuan-Hang, Zheng Pei-Lin, Zhang Yi, Deng Dong-Ling

机构信息

Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China.

Department of Physics, University of California, San Diego, California 92093, USA.

出版信息

Phys Rev Lett. 2020 Oct 23;125(17):170501. doi: 10.1103/PhysRevLett.125.170501.

Abstract

Quantum compiling, a process that decomposes the quantum algorithm into a series of hardware-compatible commands or elementary gates, is of fundamental importance for quantum computing. We introduce an efficient algorithm based on deep reinforcement learning that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set. It generates near-optimal gate sequences with given accuracy and is generally applicable to various scenarios, independent of the hardware-feasible universal set and free from using ancillary qubits. For concreteness, we apply this algorithm to the case of topological compiling of Fibonacci anyons and obtain near-optimal braiding sequences for arbitrary single-qubit unitaries. Our algorithm may carry over to other challenging quantum discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum physics.

摘要

量子编译是将量子算法分解为一系列硬件兼容命令或基本门的过程,对量子计算至关重要。我们引入了一种基于深度强化学习的高效算法,该算法可将任意单量子比特门编译为来自有限通用集的基本门序列。它能以给定精度生成接近最优的门序列,并且通常适用于各种场景,与硬件可行的通用集无关,且无需使用辅助量子比特。具体而言,我们将此算法应用于斐波那契任意子的拓扑编译情况,并获得了任意单量子比特酉算子的接近最优的编织序列。我们的算法可能适用于其他具有挑战性的量子离散问题,从而为深度学习在量子物理中的有趣应用开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验