用于量子系统估计与控制的机器学习。

Machine learning for estimation and control of quantum systems.

作者信息

Ma Hailan, Qi Bo, Petersen Ian R, Wu Re-Bing, Rabitz Herschel, Dong Daoyi

机构信息

School of Engineering, Australian National University, Canberra, ACT 2601, Australia.

Nanyang Quantum Hub, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

出版信息

Natl Sci Rev. 2025 Jul 7;12(8):nwaf269. doi: 10.1093/nsr/nwaf269. eCollection 2025 Aug.

Abstract

The advancement of quantum technologies depends on the ability to create and manipulate increasingly complex quantum systems, with critical applications in quantum computation, quantum simulation and quantum sensing. These developments present substantial challenges in efficient control, calibration and verification of quantum systems. Machine learning methods have emerged as powerful tools owing to their remarkable capability to learn from data, and have thus been extensively utilized for various quantum tasks. This paper reviews several significant topics at the intersection of machine learning and quantum estimation and control. Specifically, we discuss neural network-based approaches for quantum state estimation, gradient-based methods for quantum optimal control, evolutionary computation for learning control of quantum systems, machine learning techniques for quantum robust control and reinforcement learning for adaptive quantum control.

摘要

量子技术的进步取决于创建和操纵日益复杂的量子系统的能力,这些系统在量子计算、量子模拟和量子传感等领域具有关键应用。这些进展在量子系统的高效控制、校准和验证方面带来了重大挑战。机器学习方法因其从数据中学习的卓越能力而成为强大的工具,因此已被广泛应用于各种量子任务。本文综述了机器学习与量子估计和控制交叉领域的几个重要主题。具体而言,我们讨论了基于神经网络的量子态估计方法、基于梯度的量子最优控制方法、用于量子系统学习控制的进化计算、用于量子鲁棒控制的机器学习技术以及用于自适应量子控制的强化学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79aa/12371192/be1d2194903f/nwaf269fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索