Muroya Stefanie, Chatterjee Krishnendu, Henzinger Thomas A
Institute of Science and Technology Austria (ISTA), Klosterneuburg 3400, Austria.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2419273122. doi: 10.1073/pnas.2419273122. Epub 2025 Mar 19.
Quantum hardware is inherently fragile and noisy. We find that the accuracy of traditional quantum error correction algorithms can be improved depending on the hardware. Given different hardware specifications, we automatically synthesize hardware-optimal algorithms for parity correction, qubit resetting, and GHZ (Greenberger-Horne-Zeilinger) state preparation. Using stochastic techniques from computer science, our method presents a computational tool to compute exact accuracy guarantees and synthesize optimal algorithms that are often different from traditional ones. We also show that improvements can be gained with respect to the Qiskit transpiler as we compute the hardware-optimal qubit mapping for the GHZ state-preparation problem.
量子硬件本质上是脆弱且有噪声的。我们发现,传统量子纠错算法的准确性可以根据硬件情况得到提高。给定不同的硬件规格,我们会自动合成用于奇偶校验校正、量子比特重置以及GHZ(格林伯格-霍恩-泽林格)态制备的硬件最优算法。利用计算机科学中的随机技术,我们的方法提供了一种计算工具,用于计算精确的准确性保证,并合成通常与传统算法不同的最优算法。我们还表明,在为GHZ态制备问题计算硬件最优量子比特映射时,相对于Qiskit编译器可以实现改进。