Suppr超能文献

基于单顶点帧检测的局部和全局信息联合学习的微表情识别。

Joint Local and Global Information Learning With Single Apex Frame Detection for Micro-Expression Recognition.

出版信息

IEEE Trans Image Process. 2021;30:249-263. doi: 10.1109/TIP.2020.3035042. Epub 2020 Nov 18.

Abstract

Micro-expressions (MEs) are rapid and subtle facial movements that are difficult to detect and recognize. Most recent works have attempted to recognize MEs with spatial and temporal information from video clips. According to psychological studies, the apex frame conveys the most emotional information expressed in facial expressions. However, it is not clear how the single apex frame contributes to micro-expression recognition. To alleviate that problem, this paper firstly proposes a new method to detect the apex frame by estimating pixel-level change rates in the frequency domain. With frequency information, it performs more effectively on apex frame spotting than the currently existing apex frame spotting methods based on the spatio-temporal change information. Secondly, with the apex frame, this paper proposes a joint feature learning architecture coupling local and global information to recognize MEs, because not all regions make the same contribution to ME recognition and some regions do not even contain any emotional information. More specifically, the proposed model involves the local information learned from the facial regions contributing major emotion information, and the global information learned from the whole face. Leveraging the local and global information enables our model to learn discriminative ME representations and suppress the negative influence of unrelated regions to MEs. The proposed method is extensively evaluated using CASME, CASME II, SAMM, SMIC, and composite databases. Experimental results demonstrate that our method with the detected apex frame achieves considerably promising ME recognition performance, compared with the state-of-the-art methods employing the whole ME sequence. Moreover, the results indicate that the apex frame can significantly contribute to micro-expression recognition.

摘要

微表情(MEs)是一种快速而微妙的面部运动,很难察觉和识别。最近的大多数工作都试图通过视频片段中的空间和时间信息来识别 ME。根据心理学研究,尖峰帧传达了面部表情中最具情感信息。然而,目前尚不清楚单个尖峰帧如何有助于微表情识别。为了解决这个问题,本文首先提出了一种新的方法,通过估计频域中的像素级变化率来检测尖峰帧。通过利用频域信息,它在尖峰帧检测方面比基于时空变化信息的现有尖峰帧检测方法更有效。其次,利用尖峰帧,本文提出了一种联合特征学习架构,耦合局部和全局信息来识别 ME,因为并非所有区域对 ME 识别都有相同的贡献,有些区域甚至不包含任何情感信息。更具体地说,所提出的模型涉及从主要情绪信息贡献的面部区域学习的局部信息,以及从整个面部学习的全局信息。利用局部和全局信息使我们的模型能够学习有区别的 ME 表示,并抑制与 ME 无关区域的负面影响。该方法在 CASME、CASME II、SAMM、SMIC 和组合数据库上进行了广泛评估。实验结果表明,与使用整个 ME 序列的最新方法相比,使用检测到的尖峰帧的方法在 ME 识别性能方面具有相当大的优势。此外,结果表明尖峰帧可以显著有助于微表情识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验