Suppr超能文献

ME-PLAN:一种基于深度原型学习和局部注意力网络的动态微表情识别方法。

ME-PLAN: A deep prototypical learning with local attention network for dynamic micro-expression recognition.

机构信息

School of Computer Science and Technology, University of Science and Technology of China (USTC), Hefei, An Hui, China; School of Computer Science and Technology, Southwest University of Science and Technology (SWUST), Mianyang, Si Chuan, China; State Key Laboratory of Cognitive Intelligence, Hefei, An Hui, China.

School of Computer Science and Technology, University of Science and Technology of China (USTC), Hefei, An Hui, China; State Key Laboratory of Cognitive Intelligence, Hefei, An Hui, China.

出版信息

Neural Netw. 2022 Sep;153:427-443. doi: 10.1016/j.neunet.2022.06.024. Epub 2022 Jun 24.

Abstract

As one of the important psychological stress reactions, Micro-expressions (MEs) are spontaneous and subtle facial movements, which usually occur in a high-stake situation and can reveal genuine human feelings and cognition. ME, Recognition (MER) has essential applications in many fields such as lie detection, criminal investigation, and psychological healing. However, due to the challenges of learning discriminative ME features via fleeting facial subtle reactions as well as the shortage of available MEs data, this research topic is still far from well-studied. To this end, in this paper, we propose a deep prototypical learning framework, namely ME-PLAN, with a local attention mechanism for the MER problem. Specifically, ME-PLAN consists of two components, i.e., a 3D residual prototypical network and a local-wise attention module, where the former aims to learn the precise ME feature prototypes through expression-related knowledge transfer and episodic training, and the latter could facilitate the attention to the local facial movements. Furthermore, to alleviate the dilemma that most MER methods need to depend on manually annotated apex frames, we propose an apex frame spotting method with Unimodal Pattern Constrained (UPC) and further extract ME key-frames sequences based on the detected apex frames to train our proposed ME-PLAN in an end-to-end manner. Finally, through extensive experiments and interpretable analysis regarding the apex frame spotting and MER on composite-database, we demonstrate the superiority and effectiveness of the proposed methods.

摘要

作为重要的心理应激反应之一,微表情(MEs)是自发的、细微的面部运动,通常出现在高风险情境中,可以揭示真实的人类情感和认知。ME 识别(MER)在测谎、犯罪调查和心理治疗等许多领域具有重要的应用。然而,由于通过短暂的面部细微反应学习有区别的 ME 特征以及缺乏可用的 ME 数据的挑战,这个研究课题仍然远未得到充分研究。为此,在本文中,我们提出了一种基于局部注意力机制的深度原型学习框架 ME-PLAN,用于解决 MER 问题。具体来说,ME-PLAN 由两个组件组成,即 3D 残差原型网络和局部注意力模块,前者旨在通过表情相关的知识迁移和事件式训练学习精确的 ME 特征原型,后者可以促进对局部面部运动的关注。此外,为了解决大多数 MER 方法需要依赖手动标注的顶点帧的困境,我们提出了一种基于单模态模式约束(UPC)的顶点帧定位方法,并进一步基于检测到的顶点帧提取 ME 关键帧序列,以端到端的方式训练我们提出的 ME-PLAN。最后,通过对复合数据库的顶点帧定位和 MER 的广泛实验和可解释性分析,我们展示了所提出方法的优越性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验