School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA.
College of Pharmacy, Oregon State University, Corvallis, OR, USA.
Cryobiology. 2021 Feb;98:219-232. doi: 10.1016/j.cryobiol.2020.10.017. Epub 2020 Nov 4.
Cryopreservation in a vitrified state has vast potential for long-term storage of tissues and organs that may be damaged by ice formation. However, the toxicity imparted by the high concentration of cryoprotectants (CPAs) required to vitrify these specimens remains a hurdle. To address this challenge, we previously developed a mathematical approach to design less toxic CPA equilibration methods based on the minimization of a toxicity cost function. This approach was used to design improved methods for equilibration of bovine pulmonary artery endothelial cells (BPAEC) with glycerol. To fully capitalize on the toxicity cost function approach, it is critical to describe the toxicity kinetics of additional CPAs, including multi-CPA mixtures that are commonly used for vitrification. In this work, we used automated liquid handling to characterize the toxicity kinetics of five of the most common CPAs (glycerol, dimethyl sulfoxide (DMSO), propylene glycol, ethylene glycol, and formamide), along with their binary and ternary mixtures for BPAEC. In doing so, we developed experimental methods that can be used to determine toxicity kinetics more quickly and accurately. Our results highlight some common CPA toxicity trends, including the relatively low toxicity of ethylene glycol and a general increase in toxicity as the CPA concentration increases. Our results also suggest potential new approaches to reduce toxicity, including a surprising toxicity neutralization effect of glycerol on formamide. In the future, this dataset will serve as the basis to expand our CPA toxicity model, enabling application of the toxicity cost function approach to vitrification solutions containing multiple CPAs.
玻璃化冷冻保存技术具有巨大的潜力,可以长期储存可能因冰晶形成而受损的组织和器官。然而,为了使这些样本玻璃化,需要使用高浓度的细胞保护剂(CPAs),这会带来毒性问题。为了解决这一挑战,我们之前开发了一种基于毒性成本函数最小化的数学方法,用于设计毒性较低的 CPAs 平衡方法。该方法用于设计改良的甘油平衡牛肺动脉内皮细胞(BPAEC)的方法。为了充分利用毒性成本函数方法,描述其他 CPAs 的毒性动力学至关重要,包括常用于玻璃化的多 CPA 混合物。在这项工作中,我们使用自动化液体处理技术来研究五种最常见的 CPAs(甘油、二甲基亚砜(DMSO)、丙二醇、乙二醇和甲酰胺)及其用于 BPAEC 的二元和三元混合物的毒性动力学。通过这种方式,我们开发了可以更快速、更准确地确定毒性动力学的实验方法。我们的结果突出了一些常见的 CPA 毒性趋势,包括乙二醇的相对低毒性和随着 CPA 浓度增加毒性普遍增加的趋势。我们的结果还表明了一些减少毒性的潜在新方法,包括甘油对甲酰胺的毒性中和作用。未来,这个数据集将成为扩展我们的 CPA 毒性模型的基础,使毒性成本函数方法能够应用于含有多种 CPAs 的玻璃化溶液。