Suppr超能文献

较高的玻璃化转变温度可降低与冷冻保存相关的水溶液中的热应力开裂。

Higher glass transition temperatures reduce thermal stress cracking in aqueous solutions relevant to cryopreservation.

作者信息

Kavian Soheil, Sellers Ronald, Sanchez Gabriel Arismendi, Alvarez Crysthal, Aguilar Guillermo, Powell-Palm Matthew J

机构信息

Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA.

Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843, USA.

出版信息

Sci Rep. 2025 Jul 31;15(1):27903. doi: 10.1038/s41598-025-13295-7.

Abstract

Cryopreservation by vitrification could transform fields ranging from organ transplantation to wildlife conservation, but critical physical challenges remain in scaling this approach from microscopic to macroscopic systems, including the threat of fracture due to accumulated thermal stresses. Here, we provide experimental and computational evidence that these stresses are strongly dependent on the glass transition temperature [Formula: see text] of the vitrification solution, a property which, given the narrow band of chemistries represented within common vitrification solutions, is seldom investigated in thermomechanical analyses. We develop a custom cryomacroscope platform to image glass cracking in four aqueous solution chemistries spanning > 50 °C in [Formula: see text]; we process these images using semantic segmentation deep learning algorithms to analyze the extent of cracking in each; and we perform thermomechanical finite element simulations to disentangle the multiphysics effects driving the observed dependency, providing new insights to inform design of next-generation vitrification solutions that minimize thermal cracking risks.

摘要

玻璃化冷冻保存技术可能会改变从器官移植到野生动物保护等诸多领域,但要将这种方法从微观系统扩展到宏观系统,仍面临关键的物理挑战,包括因累积热应力导致破裂的威胁。在此,我们提供了实验和计算证据,表明这些应力强烈依赖于玻璃化溶液的玻璃化转变温度[公式:见正文],鉴于常见玻璃化溶液中所涵盖的化学组成范围较窄,这一特性在热机械分析中很少被研究。我们开发了一个定制的低温显微镜平台,以成像四种水溶液化学体系中跨越>50°C的玻璃裂纹;我们使用语义分割深度学习算法处理这些图像,以分析每种体系中的裂纹程度;并且我们进行热机械有限元模拟,以厘清驱动所观察到的依赖性的多物理效应,从而为设计下一代能将热裂纹风险降至最低的玻璃化溶液提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7280/12314009/f0d4cd5f904d/41598_2025_13295_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验