Suppr超能文献

乙撑基亚硝胺类损伤的直接氧化修复研究:ALKBH2 和 AlkB 的底物范围的 MD 和 QM/MM 研究。

Insights into the Direct Oxidative Repair of Etheno Lesions: MD and QM/MM Study on the Substrate Scope of ALKBH2 and AlkB.

机构信息

Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.

Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.

出版信息

DNA Repair (Amst). 2020 Dec;96:102944. doi: 10.1016/j.dnarep.2020.102944. Epub 2020 Sep 9.

Abstract

E. coli AlkB and human ALKBH2 belong to the AlkB family enzymes, which contain several α-ketoglutarate (α-KG)/Fe(II)-dependent dioxygenases that repair alkylated DNA. Specifically, the AlkB enzymes catalyze decarboxylation of α-KG to generate a high-valent Fe(IV)-oxo species that oxidizes alkyl groups on DNA adducts. AlkB and ALKBH2 have been reported to differentially repair select etheno adducts, with preferences for 1,N-ethenoadenine (1,N-εA) and 3,N-ethenocytosine (3,N-εC) over 1,N-ethenoguanine (1,N-εG). However, N,3-ethenoguanine (N,3-εG), the most common etheno adduct, is not repaired by the AlkB enzymes. Unfortunately, a structural understanding of the differential activity of E. coli AlkB and human ALKBH2 is lacking due to challenges acquiring atomistic details for a range of substrates using experiments. This study uses both molecular dynamics (MD) simulations and ONIOM(QM:MM) calculations to determine how the active site changes upon binding each etheno adduct and characterizes the corresponding catalytic impacts. Our data reveal that the preferred etheno substrates (1,N-εA and 3,N-εC) form favorable interactions with catalytic residues that situate the lesion near the Fe(IV)-oxo species and permit efficient oxidation. In contrast, although the damage remains correctly aligned with respect to the Fe(IV)-oxo moiety, repair of 1,N-εG is mitigated by increased solvation of the active site and a larger distance between Fe(IV)-oxo and the aberrant carbons. Binding of non-substrate N,3-εG in the active site disrupts key DNA-enzyme interactions, and positions the aberrant carbon atoms even further from the Fe(IV)-oxo species, leading to prohibitively high barriers for oxidative catalysis. Overall, our calculations provide the first structural insight required to rationalize the experimentally-reported substrate specificities of AlkB and ALKBH2 and thereby highlight the roles of several active site residues in the repair of etheno adducts that directly correlates with available experimental data. These proposed catalytic strategies can likely be generalized to other α-KG/Fe(II)-dependent dioxygenases that play similar critical biological roles, including epigenetic and post-translational regulation.

摘要

大肠杆菌 AlkB 和人类 ALKBH2 属于 AlkB 家族酶,该酶包含几种依赖α-酮戊二酸(α-KG)/Fe(II)的双加氧酶,可修复烷基化 DNA。具体而言,AlkB 酶催化 α-KG 的脱羧生成高价 Fe(IV)-氧物种,该物种氧化 DNA 加合物上的烷基。已报道 AlkB 和 ALKBH2 对选择的乙基亚加合物具有不同的修复偏好,对 1,N-乙基亚嘌呤(1,N-εA)和 3,N-乙基亚胞嘧啶(3,N-εC)的偏好高于 1,N-乙基亚鸟嘌呤(1,N-εG)。然而,最常见的乙基亚加合物 N,3-乙基亚鸟嘌呤(N,3-εG)不能被 AlkB 酶修复。不幸的是,由于使用实验获取各种底物的原子细节方面存在挑战,因此缺乏对大肠杆菌 AlkB 和人类 ALKBH2 差异活性的结构理解。本研究使用分子动力学(MD)模拟和 ONIOM(QM:MM)计算来确定结合每种乙基亚加合物时活性位点如何变化,并对相应的催化影响进行了表征。我们的数据表明,首选的乙基亚加合物(1,N-εA 和 3,N-εC)与催化残基形成有利的相互作用,使损伤物靠近 Fe(IV)-氧物种,并允许有效氧化。相比之下,尽管损伤物相对于 Fe(IV)-氧部分保持正确对齐,但由于活性位点的溶剂化程度增加以及 Fe(IV)-氧与异常碳原子之间的距离增大,1,N-εG 的修复受到阻碍。非底物 N,3-εG 在活性位点的结合破坏了关键的 DNA-酶相互作用,并使异常碳原子进一步远离 Fe(IV)-氧物种,导致氧化催化的势垒极高。总的来说,我们的计算提供了合理化 AlkB 和 ALKBH2 实验报告的底物特异性所需的第一个结构见解,并由此突出了几个活性位点残基在乙基亚加合物修复中的作用,这与现有实验数据直接相关。这些提出的催化策略可能可以推广到其他具有相似关键生物学作用的依赖α-酮戊二酸(α-KG)/Fe(II)的双加氧酶,包括表观遗传和翻译后调控。

相似文献

引用本文的文献

本文引用的文献

4
ROS and the DNA damage response in cancer.活性氧(ROS)与癌症中的 DNA 损伤反应。
Redox Biol. 2019 Jul;25:101084. doi: 10.1016/j.redox.2018.101084. Epub 2018 Dec 21.
10
MCPB.py: A Python Based Metal Center Parameter Builder.MCPB.py:一个基于Python的金属中心参数构建器。
J Chem Inf Model. 2016 Apr 25;56(4):599-604. doi: 10.1021/acs.jcim.5b00674. Epub 2016 Mar 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验