Suppr超能文献

进化-通讯尖峰神经网络系统。

Evolution-Communication Spiking Neural P Systems.

机构信息

School of Computer Science and Technology, Soochow University, Suzhou 215006, P. R. China.

Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou 215006, P. R. China.

出版信息

Int J Neural Syst. 2021 Feb;31(2):2050064. doi: 10.1142/S0129065720500641. Epub 2020 Nov 7.

Abstract

Spiking neural P systems (SNP systems) are a class of distributed and parallel computation models, which are inspired by the way in which neurons process information through spikes, where the integrate-and-fire behavior of neurons and the distribution of produced spikes are achieved by spiking rules. In this work, a novel mechanism for separately describing the integrate-and-fire behavior of neurons and the distribution of produced spikes, and a novel variant of the SNP systems, named evolution-communication SNP (ECSNP) systems, is proposed. More precisely, the integrate-and-fire behavior of neurons is achieved by spike-evolution rules, and the distribution of produced spikes is achieved by spike-communication rules. Then, the computational power of ECSNP systems is examined. It is demonstrated that ECSNP systems are Turing universal as number-generating devices. Furthermore, the computational power of ECSNP systems with a restricted form, i.e. the quantity of spikes in each neuron throughout a computation does not exceed some constant, is also investigated, and it is shown that such restricted ECSNP systems can only characterize the family of semilinear number sets. These results manifest that the capacity of neurons for information storage (i.e. the quantity of spikes) has a critical impact on the ECSNP systems to achieve a desired computational power.

摘要

尖峰神经网络系统(SNP 系统)是一类分布式并行计算模型,其灵感来源于神经元通过尖峰传递信息的方式,通过尖峰规则实现神经元的整合-点火行为和产生尖峰的分布。在这项工作中,提出了一种用于分别描述神经元的整合-点火行为和产生尖峰分布的新机制,以及 SNP 系统的一种新变体,称为进化-通信 SNP(ECSNP)系统。更确切地说,神经元的整合-点火行为是通过尖峰进化规则来实现的,而产生尖峰的分布则是通过尖峰通信规则来实现的。然后,研究了 ECSNP 系统的计算能力。结果表明,ECSNP 系统作为生成数设备是图灵通用的。此外,还研究了具有受限形式的 ECSNP 系统的计算能力,即整个计算过程中每个神经元产生的尖峰数量不超过某个常数,结果表明,这种受限的 ECSNP 系统只能描述半线性数集族。这些结果表明,神经元的信息存储能力(即尖峰数量)对 ECSNP 系统实现所需的计算能力具有关键影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验