Suppr超能文献

请求式通信的尖峰神经网络膜系统计算能力调谐

On the Tuning of the Computation Capability of Spiking Neural Membrane Systems with Communication on Request.

机构信息

School of Computer Science and Technology, Soochow University, Suzhou 215006, P. R. China.

NICE Research Group, Department of Computer Science, University of Surrey, Stag Hill, University Campus, Guildford GU2 7XH, UK.

出版信息

Int J Neural Syst. 2022 Aug;32(8):2250037. doi: 10.1142/S012906572250037X. Epub 2022 Jul 16.

Abstract

Spiking neural P systems (abbreviated as SNP systems) are models of computation that mimic the behavior of biological neurons. The spiking neural P systems with communication on request (abbreviated as SNQP systems) are a recently developed class of SNP system, where a neuron actively requests spikes from the neighboring neurons instead of passively receiving spikes. It is already known that small SNQP systems, with four unbounded neurons, can achieve Turing universality. In this context, 'unbounded' means that the number of spikes in a neuron is not capped. This work investigates the dependency of the number of unbounded neurons on the computation capability of SNQP systems. Specifically, we prove that (1) SNQP systems composed entirely of bounded neurons can characterize the family of finite sets of numbers; (2) SNQP systems containing two unbounded neurons are capable of generating the family of semilinear sets of numbers; (3) SNQP systems containing three unbounded neurons are capable of generating nonsemilinear sets of numbers. Moreover, it is obtained in a constructive way that SNQP systems with two unbounded neurons compute the operations of Boolean logic gates, i.e., OR, AND, NOT, and XOR gates. These theoretical findings demonstrate that the number of unbounded neurons is a key parameter that influences the computation capability of SNQP systems.

摘要

尖峰神经网络 P 系统(简称 SNP 系统)是一种模拟生物神经元行为的计算模型。具有请求式通信的尖峰神经网络 P 系统(简称 SNQP 系统)是 SNP 系统的一个新的分支,其中神经元主动请求来自相邻神经元的尖峰,而不是被动接收尖峰。已知,拥有四个无界神经元的小型 SNQP 系统可以实现图灵完备性。在这里,“无界”是指神经元中尖峰的数量不受限制。这项工作研究了 SNQP 系统的计算能力与无界神经元数量的依赖关系。具体来说,我们证明了:(1)完全由有界神经元组成的 SNQP 系统可以刻画有限数集的家族;(2)包含两个无界神经元的 SNQP 系统能够生成半线性数集的家族;(3)包含三个无界神经元的 SNQP 系统能够生成非线性数集的家族。此外,我们还以一种构造性的方式得到了一个结论,即包含两个无界神经元的 SNQP 系统可以计算布尔逻辑门的运算,即 OR、AND、NOT 和 XOR 门。这些理论发现表明,无界神经元的数量是影响 SNQP 系统计算能力的关键参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验