Zhang Xueying, Just Allan C, Hsu Hsiao-Hsien Leon, Kloog Itai, Woody Matthew, Mi Zhongyuan, Rush Johnathan, Georgopoulos Panos, Wright Robert O, Stroustrup Annemarie
Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Sci Total Environ. 2021 Mar 20;761:143279. doi: 10.1016/j.scitotenv.2020.143279. Epub 2020 Nov 2.
Estimating the ambient concentration of nitrogen dioxide (NO) is challenging because NO generated by local fossil fuel combustion varies greatly in concentration across space and time. This study demonstrates an integrated hybrid approach combining dispersion modeling and land use regression (LUR) to predict daily NO concentrations at a high spatial resolution (e.g., 50 m) in the New York tri-state area. The daily concentration of traffic-related NO was estimated at the Environmental Protection Agency's NO monitoring sites in the study area for the years 2015-2017, using the Research LINE source (R-LINE) model with inputs of traffic data provided by the Highway Performance and Management System and meteorological data provided by the NOAA Integrated Surface Database. We used the R-LINE-predicted daily concentrations of NO to build mixed-effects regression models, including additional variables representing land use features, geographic characteristics, weather, and other predictors. The mixed model was selected by the Elastic Net method. Each model's performance was evaluated using the out-of-sample coefficient of determination (R) and the square root of mean squared error (RMSE) from ten-fold cross-validation (CV). The mixed model showed a good prediction performance (CV R: 0.75-0.79, RMSE: 3.9-4.0 ppb). R-LINE outputs improved the overall, spatial, and temporal CV R by 10.0%, 18.9% and 7.7% respectively. Given the output of R-LINE is point-based and has a flexible spatial resolution, this hybrid approach allows prediction of daily NO at an extremely high spatial resolution such as city blocks.
估算二氧化氮(NO)的环境浓度具有挑战性,因为当地化石燃料燃烧产生的NO浓度在空间和时间上变化很大。本研究展示了一种综合混合方法,该方法结合了扩散模型和土地利用回归(LUR),以预测纽约三州地区高空间分辨率(例如50米)下的每日NO浓度。利用研究线源(R-LINE)模型,输入由公路性能和管理系统提供的交通数据以及由美国国家海洋和大气管理局综合地面数据库提供的气象数据,估算了2015 - 2017年研究区域内环境保护局NO监测站点与交通相关的NO每日浓度。我们使用R-LINE预测的NO每日浓度来建立混合效应回归模型,模型中纳入了代表土地利用特征、地理特征、天气和其他预测因子的额外变量。混合模型通过弹性网络方法进行选择。每个模型的性能通过样本外决定系数(R)和十折交叉验证(CV)得到的均方根误差(RMSE)进行评估。混合模型显示出良好的预测性能(CV R:0.75 - 0.79,RMSE:3.9 - 4.0 ppb)。R-LINE的输出分别使总体、空间和时间CV R提高了10.0%、18.9%和7.7%。鉴于R-LINE的输出是基于点的且具有灵活的空间分辨率,这种混合方法能够在极高的空间分辨率(如城市街区)下预测每日NO浓度。