Roosan Don, Chok Jay, Karim Mazharul, Law Anandi V, Baskys Andrius, Hwang Angela, Roosan Moom R
Department of Pharmacy Practice and Administration, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States.
School of Applied Life Sciences, Keck Graduate Institute, Claremont Colleges, Claremeont, CA, United States.
JMIR Res Protoc. 2020 Nov 9;9(11):e21659. doi: 10.2196/21659.
Medication Guides consisting of crucial interactions and side effects are extensive and complex. Due to the exhaustive information, patients do not retain the necessary medication information, which can result in hospitalizations and medication nonadherence. A gap exists in understanding patients' cognition of managing complex medication information. However, advancements in technology and artificial intelligence (AI) allow us to understand patient cognitive processes to design an app to better provide important medication information to patients.
Our objective is to improve the design of an innovative AI- and human factor-based interface that supports patients' medication information comprehension that could potentially improve medication adherence.
This study has three aims. Aim 1 has three phases: (1) an observational study to understand patient perception of fear and biases regarding medication information, (2) an eye-tracking study to understand the attention locus for medication information, and (3) a psychological refractory period (PRP) paradigm study to understand functionalities. Observational data will be collected, such as audio and video recordings, gaze mapping, and time from PRP. A total of 50 patients, aged 18-65 years, who started at least one new medication, for which we developed visualization information, and who have a cognitive status of 34 during cognitive screening using the TICS-M test and health literacy level will be included in this aim of the study. In Aim 2, we will iteratively design and evaluate an AI-powered medication information visualization interface as a smartphone app with the knowledge gained from each component of Aim 1. The interface will be assessed through two usability surveys. A total of 300 patients, aged 18-65 years, with diabetes, cardiovascular diseases, or mental health disorders, will be recruited for the surveys. Data from the surveys will be analyzed through exploratory factor analysis. In Aim 3, in order to test the prototype, there will be a two-arm study design. This aim will include 900 patients, aged 18-65 years, with internet access, without any cognitive impairment, and with at least two medications. Patients will be sequentially randomized. Three surveys will be used to assess the primary outcome of medication information comprehension and the secondary outcome of medication adherence at 12 weeks.
Preliminary data collection will be conducted in 2021, and results are expected to be published in 2022.
This study will lead the future of AI-based, innovative, digital interface design and aid in improving medication comprehension, which may improve medication adherence. The results from this study will also open up future research opportunities in understanding how patients manage complex medication information and will inform the format and design for innovative, AI-powered digital interfaces for Medication Guides.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/21659.
包含关键相互作用和副作用的用药指南内容广泛且复杂。由于信息详尽,患者无法记住必要的用药信息,这可能导致住院治疗和用药依从性不佳。在理解患者对复杂用药信息管理的认知方面存在差距。然而,技术和人工智能(AI)的进步使我们能够了解患者的认知过程,从而设计一款应用程序,以便更好地向患者提供重要的用药信息。
我们的目标是改进基于人工智能和人为因素的创新界面设计,该界面支持患者对用药信息的理解,从而有可能提高用药依从性。
本研究有三个目标。目标1有三个阶段:(1)一项观察性研究,以了解患者对用药信息的恐惧和偏见认知;(2)一项眼动追踪研究,以了解用药信息的注意力焦点;(3)一项心理不应期(PRP)范式研究,以了解功能。将收集观察数据,如音频和视频记录、注视映射以及PRP的时间。本目标研究将纳入50名年龄在18至65岁之间、开始使用至少一种新药物(我们为其开发了可视化信息)、在使用TICS-M测试进行认知筛查时认知状态为34且具备健康素养水平的患者。在目标2中,我们将利用从目标1的每个部分获得的知识,迭代设计并评估一个作为智能手机应用程序的人工智能驱动的用药信息可视化界面。该界面将通过两项可用性调查进行评估。将招募300名年龄在18至65岁之间、患有糖尿病、心血管疾病或精神健康障碍的患者参与调查。调查数据将通过探索性因素分析进行分析。在目标3中,为了测试该原型,将采用双臂研究设计。本目标将包括900名年龄在18至65岁之间、能够上网、无任何认知障碍且至少使用两种药物的患者。患者将被依次随机分组。将使用三项调查来评估12周时用药信息理解的主要结果和用药依从性的次要结果。
初步数据收集将于2021年进行,预计结果将于2022年发表。
本研究将引领基于人工智能的创新数字界面设计的未来,并有助于提高用药理解,这可能会提高用药依从性。本研究的结果还将为理解患者如何管理复杂用药信息开辟未来的研究机会,并为创新的、人工智能驱动的用药指南数字界面的形式和设计提供参考。
国际注册报告识别码(IRRID):PRR1-10.2196/21659