Suppr超能文献

海马优化-深度神经网络:基于手势识别的药物依从性监测系统。

Sea Horse Optimization-Deep Neural Network: A Medication Adherence Monitoring System Based on Hand Gesture Recognition.

机构信息

Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.

Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia.

出版信息

Sensors (Basel). 2024 Aug 12;24(16):5224. doi: 10.3390/s24165224.

Abstract

Medication adherence is an essential aspect of healthcare for patients and is important for achieving medical objectives. However, the lack of standard techniques for measuring adherence is a global concern, making it challenging to accurately monitor and measure patient medication regimens. The use of sensor technology for medication adherence monitoring has received much attention lately since it makes it possible to continuously observe patients' medication adherence behavior. Sensor devices or smart wearables utilize state-of-the-art machine learning (ML) methods to analyze intricate data patterns and provide predictions accurately. The key aim of this work is to develop a sensor-based hand gesture recognition model to predict medication activities. In this research, a smart sensor device-based hand gesture prediction model is developed to recognize medication intake activities. The device includes a tri-axial gyroscope, geometric, and accelerometer sensors to sense and gather data from hand gestures. A smartphone application gathers hand gesture data from the sensor device, which is then stored in the cloud database in a .csv format. These data are collected, processed, and classified to recognize the medication intake activity using the proposed novel neural network model called Sea Horse Optimization-Deep Neural Network (SHO-DNN). The SHO technique is implemented to update the biases and weights and the number of hidden layers in the DNN model. By updating these parameters, the DNN model is improved in classifying the samples of hand gestures to identify the medication activities. The research model demonstrates impressive performance, with an accuracy of 98.59%, sensitivity of 97.82%, precision of 98.69%, and an F1 score of 98.48%. Hence, the proposed model outperformed the most available models in all the aforementioned aspects. The results indicate that this model is a promising approach for medication adherence monitoring in healthcare applications, instilling confidence in its effectiveness.

摘要

药物依从性是患者医疗保健的一个重要方面,对于实现医疗目标至关重要。然而,缺乏衡量依从性的标准技术是一个全球性的问题,这使得准确监测和衡量患者的药物治疗方案变得具有挑战性。最近,传感器技术在药物依从性监测中的应用受到了广泛关注,因为它可以实现对患者药物依从性行为的持续观察。传感器设备或智能可穿戴设备利用最先进的机器学习 (ML) 方法来分析复杂的数据模式并准确提供预测。这项工作的主要目标是开发基于传感器的手势识别模型来预测药物活动。在这项研究中,开发了一种基于智能传感器设备的手势预测模型来识别药物摄入活动。该设备包括三轴陀螺仪、几何和加速度计传感器,用于感知和收集手势数据。智能手机应用程序从传感器设备收集手势数据,然后以.csv 格式存储在云数据库中。这些数据被收集、处理和分类,使用称为海马优化-深度神经网络 (SHO-DNN) 的新型神经网络模型识别药物摄入活动。实施 SHO 技术来更新 DNN 模型中的偏差和权重以及隐藏层的数量。通过更新这些参数,可以改进 DNN 模型,以对手势样本进行分类,从而识别药物活动。研究模型表现出令人印象深刻的性能,准确率为 98.59%,灵敏度为 97.82%,精度为 98.69%,F1 得分为 98.48%。因此,与所有上述方面的最可用模型相比,该模型表现出色。结果表明,该模型是医疗保健应用中药物依从性监测的一种很有前途的方法,对其有效性充满信心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cbe/11360803/3e76e1acbaa8/sensors-24-05224-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验