Statz Martin, Schneider Severin, Berger Felix J, Lai Lianglun, Wood William A, Abdi-Jalebi Mojtaba, Leingang Simone, Himmel Hans-Jörg, Zaumseil Jana, Sirringhaus Henning
Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, U.K.
Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
ACS Nano. 2020 Nov 24;14(11):15552-15565. doi: 10.1021/acsnano.0c06181. Epub 2020 Nov 9.
Understanding the charge transport mechanisms in chirality-selected single-walled carbon nanotube (SWCNT) networks and the influence of network parameters is essential for further advances of their optoelectronic and thermoelectric applications. Here, we report on charge density and temperature-dependent field-effect mobility and on-chip field-effect-modulated Seebeck coefficient measurements of polymer-sorted monochiral small-diameter (6,5) (0.76 nm) and mixed large-diameter SWCNT (1.17-1.55 nm) networks (plasma torch nanotubes, RN) with different network densities and length distributions. All untreated networks display balanced ambipolar transport and electron-hole symmetric Seebeck coefficients. We show that charge and thermoelectric transport in SWCNT networks can be modeled by the Boltzmann transport formalism, incorporating transport in heterogeneous media and fluctuation-induced tunneling. Considering the diameter-dependent one-dimensional density of states (DoS) of the SWCNTs composing the network, we can simulate the charge density and temperature-dependent Seebeck coefficients. Our simulations suggest that scattering in these networks cannot be described as simple one-dimensional acoustic and optical phonon scattering as for single SWCNTs. Instead the relaxation time is inversely proportional to energy (τ ∝ ( - ), = -1, being the energy of the first van Hove singularity), presumably pointing toward the more two-dimensional character of scattering events and the necessity to include scattering at the SWCNT junctions. Finally, our observation of higher power factors in trap-free, 1,2,4,5-tetrakis(tetramethylguanidino)benzene-treated (6,5) networks than in the RN networks emphasizes the importance of chirality selection to tune the width of the DoS. To benefit from both higher intrinsic mobilities and a large thermally accessible DoS, we propose trap-free, narrow DoS distribution, large-diameter SWCNT networks for both electronic and thermoelectric applications.
了解手性选择的单壁碳纳米管(SWCNT)网络中的电荷传输机制以及网络参数的影响,对于其光电和热电应用的进一步发展至关重要。在此,我们报告了聚合物分类的单手性小直径(6,5)(0.76纳米)和混合大直径SWCNT(1.17 - 1.55纳米)网络(等离子体火炬纳米管,RN)在不同网络密度和长度分布下的电荷密度和温度依赖的场效应迁移率以及片上场效应调制的塞贝克系数测量结果。所有未处理的网络都表现出平衡的双极性传输和电子 - 空穴对称的塞贝克系数。我们表明,SWCNT网络中的电荷和热电传输可以通过玻尔兹曼传输形式来建模,其中纳入了异质介质中的传输和涨落诱导的隧穿。考虑到构成网络的SWCNT的直径依赖的一维态密度(DoS),我们可以模拟电荷密度和温度依赖的塞贝克系数。我们的模拟表明,这些网络中的散射不能像单个SWCNT那样被描述为简单的一维声学和光学声子散射。相反,弛豫时间与能量成反比(τ ∝ ( - ), = -1, 是第一个范霍夫奇点的能量),这大概表明散射事件具有更多的二维特征,并且有必要考虑SWCNT结处的散射。最后,我们观察到在无陷阱的1,2,4,5 - 四(四甲基胍基)苯处理的(6,5)网络中比在RN网络中具有更高的功率因数,这强调了手性选择对于调节DoS宽度的重要性。为了同时受益于更高的本征迁移率和大的热可及DoS,我们提出用于电子和热电应用的无陷阱、窄DoS分布、大直径SWCNT网络。